
1

Automatic Generation of Neural Networks
based on Genetic Algorithms

Fiszelew, A.1, Britos, P. 2, 3, Perichisky, G. 3 & García-Martínez, R. 2

1 Intelligent Systems Laboratory. School of Engineering. University of Buenos Aires. Paseo Colón 850
4to Piso. Ala Sur. (1063). Capital Federal. ARGENTINA

afiszelew@fi.uba.ar
2 Software & Knowlwdge Engineering Center (CAPIS). Buenos Aires Institute of Technology.

Av. Madero 399. (1106) Capital Federal. ARGENTINA
pbritos@itba.edu.ar, rgm@itba.edu.ar

3 Ph.D. Computer Science Program. School of Computer Science. National University of La Plata.
ARGENTINA

gperi@mara.fi.uba.ar

Abstract - This work deals with methods for finding optimal neural network architectures to learn par-
ticular problems. A genetic algorithm is used to discover suitable domain specific architectures; this
evolutionary algorithm applies direct codification and uses the error from the trained network as a per-
formance measure to guide the evolution. The network training is accomplished by the back-
propagation algorithm; techniques such as training repetition, early stopping and complex regulation
are employed to improve the evolutionary process results. The evaluation criteria are based on learn-
ing skills and classification accuracy of generated architectures

Key-words: evolutionary computation, neural networks, genetic algorithms, codification methods.

Introduction

The artificial neural networks offer an attractive
paradigm for the design and the analysis of adap-
tive intelligent systems for a wide range of applica-
tions in artificial intelligence [1, 2].

Despite the great activity and investigation in this
area during last years, that led to the discovery of
relevant theoretical and empirical results, the design
of neural networks for specific applications under
certain designing constrains (for instance, technol-
ogy) is still a test and error process, depending
mainly on previous experience in similar applica-
tions [3]. The performance (and cost) of a neural
network for particular problems is critically depend-
ant on, among others, the choice of the processing
elements (neurons), the net architecture and the
learning algorithm [4, 5, 6, 7, 8, 9].

This work is focused in the development of methods
for the evolutionary design of architectures for artifi-
cial neural networks. Neural networks are usually
seen as a method to implement complex non-linear
mappings (functions) using simple elementary units

interrelated through connections with adaptive
weights [10, 11]. We focus in optimizing the struc-
ture of connectivity for these networks.

Evolutionary design of neural architectures

The key process in the evolutionary approach for
topology designing is depicted in figure 1.

Figure 1 Design process of evolutionary neural
architectures

In the most general case, a genotype can be
thought as an array of genes, where every gene
takes a value from a properly defined domain [12].
Each genotype codes a phenotype or candidate

2

solution for the domain of interest – in our case a
neural architecture class. Such codifications could
use genes that take numeric values to represent a
few parameters or complex structures of symbols
that become into phenotypes (in this case neural
networks) by means of a proper decodification pro-
cess. This process can be extremely simple or quite
complex. The resulting neural networks (the phe-
notypes) can also be equipped with learning algo-
rithms that train them using stimulus from the envi-
ronment or simply be evaluated in a given task (as-
suming that the weights of the net are also settled
by the coding / decoding mechanism). This evalua-
tion of a phenotype determines the fitness of its
corresponding genotype [13, 14].

The evolutionary procedure works in a population of
such genotypes, preferably selecting genotypes that
code phenotypes with a high fitness, and reproduc-
ing them. Genetic operators such as mutation,
crossover, etc., are used to introduce variety into
the population and to test variants of candidate so-
lutions represented in the current population. In this
way, over several generations, the population
gradually will evolve toward genotypes that corre-
spond to phenotypes with high fitness.

In this work, the genotype only codes the architec-
ture of a neural network with forward connections.
The training of the weights for those connections is
carried out by the back-propagation algorithm.

The generalization problem

The topology of a network, that is, the number of
nodes and the location and the number of connec-
tions among them, has a significant impact in the
performance of the network and its generalization
skills. The connections density in a neural network
determines its ability to store information. If a net-
work doesn't have enough connections among
nodes, the training algorithm may never converge;
the neural network will not be able to approximate
the function. On the other hand, overfitting can hap-
pen in a densely connected network. Overfitting is a
problem of statistical models where too many pa-
rameters are presented. This is a bad situation be-
cause instead of learning how to approximate the
function presented in the data, the network could
simply memorize every training example. The noise
in the training data is then memorized as part of the
function, often destroying the skills of the network to
generalize.

Having good generalization as a goal, it is very diffi-
cult to realize the best moment to stop the training if
we are looking only at the training learning curve. In

particular, like we mention previously, it is possible
that the network ends up overfitting the training data
if the training session is not stopped at the right
time.

We can identify the beginning of overfitting by using
crossed validation: the training examples are split
into an training subset and a validation subset. The
training subset is used to train the network in the
usual way, except for a little modification: the train-
ing session is periodically stopped (every a certain
number of epochs), and the network is evaluated
with the validation set after each training period.

The figure 2 shows the conceptualized forms of two
learning curves, one belonging to measures over
the training subset and the other over the validation
subset. Usually, the model doesn't work so well on
the validation subset as it does on the training sub-
set, the design of which the model was based on.
The estimation learning curve decreases monoto-
nously to a minimum for a growing number of ep-
ochs in the usual way. In contrast, the validation
learning curve decreases to a minimum, then it be-
gins to increase while the training continues.

When we look at the estimation learning curve it
seems that we could improve if we go beyond the
minimum point on the validation learning curve. In
fact, what the network is learning beyond that point
is essentially noise contained in the training set. The
early stopping heuristic suggests that the minimum
point on the validation learning curve should be
used as an approach to stop the training session.

Figure 2 Representation of the early stopping heu-
ristic based on crossed validation.

The question that arises here is how many times we
should let the training subset not improve over the
validation subset, before stopping the training ses-

3

sion. We define an early-stopping parameter β to
represent this number of training epochs.

The permutation problem

A problem that evolutionary neural networks face is
the permutation problem. It not only makes evolu-
tion less efficient, but also hinders to the recombi-
nation operators the production of children with high
fitness. The reason is the many-to-one mapping
from the coded representation of a neural network
to the real neural network decoded, because two
networks that order their hidden nodes in different
ways have different representation but can be func-
tionally equivalent, as shown in the figures 3 and 4.

(a)

0100 1010 0010 0000 0111 0011

(b)

Figure 3 (a) A neural network with its connection
weights; (b) A binary representation of the weights,
assuming that each weight is represented with 4
bits. Zero jeans no connection.

(a)

0010 0000 0100 1010 0011 0111

(b)

Figure 4 (a) A neural network that is equivalent to
the one in figure 3(a); (b) The representation of the
genotype under the same scheme of representa-
tion.

To attenuate the effects of the permutation problem,
we implement a phenotype crossover, that is, a
crossover that works on neural networks rather than
on chains of genes that make up the population.
Another operator that helps in the face of the per-
mutation problem is mutation. This operator induces
to explore the whole search space and allows
maintaining a genetic diversity in the population, so
that the genetic algorithm is able to find solutions
among all the possible permutations of the network.

The noisy fitness evaluation problem

The evaluation of the fitness of the architectures of
neural networks will always be noisy if the evolution
of the architectures is separated from the training of
the weights. The evaluation is noisy because what
is used to evaluate the fitness of the phenotype is
the real architecture with weights (that is, the phe-
notype created from the genotype) and the mapping
between phenotype and genotype is not one-to-one.

Such a noise can deceive to evolution, because the
fact that the fitness of a phenotype generated from
genotype G1 is higher than the fitness of a pheno-
type generated from genotype G2 doesn't imply that
G1 has truly better quality that G2.

To reduce this noise, we train each architecture
many times starting from different initial weights
chosen randomly. Then we take the best result to
estimate the fitness of the phenotype. This method
increases the computation time for the fitness
evaluation, so a compromise must be achieved
among the attenuation of the noise and the number
of repetitions for the training.

The complexity-regularization problem

As the network design is statistical in nature, we
need an appropriate tradeoff between reliability of
the training data and goodness of the model. In the
context of back-propagation learning, we may real-
ize this tradeoff by minimizing the total risk ex-
pressed as:

R(w) = εS(W) + λ εC(w)

4

The first term, εS(W), is the standard performance
measure, which depends on both the network
(model) and the input data. In back-propagation
model learning it is typically defined as a mean-
square error whose extends over the output neu-
rons of the network and which is carried out for all
the training examples on an epoch-by-epoch basis.
The second term, εC(w), is the complexity penalty,
which depends on the network (model) alone; its
inclusion imposes on the solution prior knowledge
that we may have on the models being considered.
We can think of λ as a regularization parameter,
which represent the relative importance of the com-
plexity-penalty term with respect to the perform-
ance-measure term.

In the weight-decay procedure that we used, the
complexity penalty term is defined as the squared
norm of the weight vector w (i.e., all the free pa-
rameters) in the network, as shown by:

() ∑
∈

==
totalCi

iC www 22ε

where the set Ctotal refers to all the synaptic weights
in the network. This procedure operates by forcing
some of the synaptic weights to take values close to
zero, while permitting others to retain their relatively
large values. Accordingly, the weights of the net-
work are grouped roughly into two categories: those
that have a large influence on the network (model),
and those that have little or no influence on it. The
weights on the latter category are referred to as
excess weights. In the absence of complexity regu-
larization, these weights result in poor generaliza-
tion by virtue of their high likelihood of taking on
completely arbitrary values or causing the network
to overfit the data in order to produce a slight reduc-
tion in the training error. The use of complexity
regularization encourages the excess weights to
assume values close to zero, and thereby improve
generalization.

Experimental design

The hybrid algorithm that we employ for the auto-
matic generation of neural networks uses a direct
coding scheme, and develops the following steps:

1. Create an initial population of individuals
(neural networks) with random topolo-
gies. Train each individual using the
back-propagation algorithm.

2. Select the mother and the father from
the population.

3. Recombinate both parents to obtain two

children.

4. Mutate each child randomly.

5. Train each child using the back-
propagation algorithm.

6. Replace the children into the population.

7. Repeat from step 2 for a given number
of generations.

Parameters used in the Genetic Algorithm

This algorithm applies a tournament selection (ordi-
nal based) and replacement consists on a steady
state update also implemented with a tournament
technique. The tournament size is 3.

A hundred of generations for the genetic algorithm
are carried out in every experiment. All the experi-
ments use a population size of 20. This is a stan-
dard value used in genetic algorithms. We make
here a compromise among selective pressure and
calculation time. The employment of 20 individuals
is good to accelerate the development of the ex-
periments without affecting at the results.

Parameters used in the Neural Network

Each neural network has 2 hidden layers and is
trained over 500 epochs with back-propagation.
This value is higher than the one usually used to
train neural networks, giving enough time to the
training to converge, and so taking advantage of the
whole potential of each network.

The back-propagation algorithm is based on the
sequential training mode; the activation function
chosen for each neuron is the hyperbolic tangent.
We use a number of back-propagation repetitions
equal to 3 to train each neural networks starting
from different random initial weights. The best result
is then used to estimate the fitness of the network.

This algorithm provides an “approximation” to the
trajectory in the weight space calculated by the de-
scendant gradient method. The correction ∆wji(n)
applied to the weight that connects the neuron i to
the neuron j is defined by the delta rule:

A simple way to increment the learning rate and at
the same time avoid the risk of instability (oscilla-
tions in the net) is to modify the delta rule including
a momentum term, lie shown in:

5

() () () ()nynnwnw ijjiji ηδα +−∆=∆ 1

where α is usually a positive number called the
momentum constant. In the experimentation, the
learning rate η is 0.1 and the momentum constant is
0.5.

The database used

The database chosen for the experimentation was
taken form a file of datasets in Internet [15]. It con-
sists on data concerning 600 applications for credit
cards. Each application represents a sample for the
training. The information of the application com-
prises the input for the neural network during the
learning phase. The output is a true/false value that
specifies whether the application was accepted or
rejected.

All the data in the applications is changed into
meaningless symbols to protect the confidentiality.
The attributes of a sample are similar to:

b,30.83,0,u,g,w,v,1.25,t,t,01,f,g,00202,0,+

In order to present the data to the network, the
maximum and minimum values for every attribute
into the training set are determined, then they are
scaled between -1 and +1. The non-numerical in-
puts (multiple-choice) are treated in the same way,
using discrete intervals.

Using these methods of transformation, we obtain a
47 inputs network. The + sign at the end of the ex-
ample stands for the class of the sample. In this
case it will be a + or a -, depending on the approba-
tion of the application, therefore the network has
two outputs, one that activates when it is approved
and the other when is rejected.

Cross Validation

The cross validation is employed in the experimen-
tation with the intention of getting better results. The
cross validation consists on swapping the training
set and the validation set, in the way that each one
is used for the opposite purpose. This method as-
sures that any tendency found in the results is, in
fact, just tendency, and not causality.

Thus, the database is randomly partitioned into two
sets of equal size that are in turns used as training
and validation subsets.

Some results from experimentation

Figure 5 Complexity-regularization with adjustable
regularization parameter: (1) λ=0 (no regulariza-
tion); (2) λ=0.05; (3) λ=0.01; (4) λ=0.15

Figure 6 Comparison of the hit percentage of neu-
ral networks generated with different regularization
parameters λ.

Figure 7 Early-stopping with adjustable stopping
parameter: (1) No early stopping; (2) β=2; (3) β=5;
(4) β=10.

6

Figure 8 Comparison of hit percentage of neural
networks generated with different early-stopping
parameters β.

Comparison of a resulting neural network with
other networks

To determine if the evolutionary process is actually
improving or not the neural networks concerning
with their domain-specific topologies, we compare a
resulting net generated by the hybrid algorithm with
the best random topology (the one generated in the
first generation of the genetic algorithm). These nets
are also compared with a topology similar to the one
obtained by the hybrid algorithm but 100% con-
nected (or fully connected).

We observe the effects of the three different topolo-
gies on the convergence of the neural networks
while they are trained with a data partition, as de-
picted in the figure 9. Then we evaluate their classi-
fication skills on another data partition, as shown in
the figure 10.

Figure 9 Ability to learning new data using: (1)
Hybrid algorithm topology; (2) Best random topol-
ogy; (3) Hybrid algorithm topology but 100% con-
nected.

Figure 10 Comparison of hit percentage for differ-
ent topology and connectivity.

From figure 9 we see that the neural network gen-
erated by the hybrid algorithm is able to learn better
a new set of data than the other nets, including the
one that implements its same topology but is fully
connected.

The network generated by the hybrid algorithm also
has the best percentage for classifying examples
not seen previously, as it is illustrated in figure 10.

Conclusions

The real world often has problems that cannot be
solved successfully by a single basic technique;
each technique has its pros and its cons. The con-
cept of hybrid system in artificial intelligence con-
sists on combining two approaches, in a way that
their weaknesses are compensated and their
strengths are boosted.

The aim of this work is to create a way of generating
topologies of neural networks that can easily learn
and classify a certain class of data. To achieve this,
a genetic algorithm is used to find the best topology
that fulfills this task. When the process finishes, the
result is a population of domain-specific networks,
ready to take new data not seen previously.

The analysis of the results of the experiments de m-
onstrates that this implementation is able to create
neural networks topologies that in general work
better than random or fully connected topologies
when they learn and classify new domain-specific
data.

An aspect that should be examined more deeply is
how the cost of a topology should be determined. In
the current implementation, the cost is simply the
training error of the neural network on a partition of
the data set. The question that arises here is if this

7

is the best way to determine the fitness of a topol-
ogy.

Another step to take would be to repeat the experi-
ments for different data sets. Scalability is an im-
portant problem in neural networks implementa-
tions, therefore it would be interesting to see how
the current implementation scales to bigger net-
works that contain thousands of inputs.

A last issue that should be explored is paralleliza-
tion of the genetic algorithm, especially considering
the huge processing times involved during the ex-
perimentation. By parallelizing the algorithm, it is
possible to increment the population's size, reduce
the computational cost and so to improve the per-
formance of the AG. The parallel genetic algorithms
or PGAs constitute a recent area of investigation,
and very interesting approaches exist such as the
Coarse Grained (islands model) PGAs or the Fine
Grain PGAs [16].

References

1. Hinton G. E. (1989) Connectionist Learning
Procedures. Artificial Intelligence, vol. 40, pp.
185-234

2. Hertz J., A. Krogh and R. Palmer (1991) Intro-
duction to the Theory of Neural Computation.
Reading, MA: Addison-Wesley.

3. Dow R. J. and Sietsma J. (1991) Creating Artifi-
cial Neural Networks that generalize. Neural
Networks, vol. 4, no. 1, pp. 198-209.

4. Haykin Simon (1999) Neural Networks. A Com-
prehensive Foundation. Second Edition.
Pretince Hall.

5. Holland J. H. (1975) Adaptation in Natural and
Artificial Systems. University of Michigan Press
(Ann Arbor).

6. Holland, J. H. (1980) Adaptive algorithms for
discovering and using general patterns in
growing knowledge-based. International Journal
of Policy Analysis and Information Systems,
4(3), 245-268.

7. Holland, J. H. (1986) Escaping brittleness: The
possibilities of general purpose learning algo-
rithms applied in parallel rule-based systems. In
R. S. Michaiski, J. G. Carbonell, & T. M. Mitchell
(Eds.), Machine Learning II (pp. 593-623). Los
Altos, CA: Morgan Kaufmann.

8. Holland, J. H., Holyoak, K. J., Nisbett, R. E., &
Thagard, P. R. (1987). Classifier systems, Q-
morphisms, and induction. In L. Davis (Ed.),

Genetic algorithms and simulated annealing (
pp. 116-128).

9. Honavar V. and L. Uhr. (1993) Generative
Learning Structures and Processes for Gener-
alized Connectionist Networks. Information Sci-
ences, 70:75--108.

10. Yao Xin (1999) Evolving Artificial Neural Net-
works. School of Computer Science. The Uni-
versity of Birmingham. B15 2TT.

11. Yao X. and Liu Y. (1998) Toward Designing
Artificial Neural Networks by Evolution. Applied
Mathematics and Computation, 91(1): 83-90.

12. Goldberg D. E. (1991) A comparative analysis
of selection schemes used in genetic algo-
rithms. In Gregory Rawlins, editor. Foundations
of Genetic Algorithms, pages 69-93, San
Mateo, CA: Morgan Kaufmann Publishers.

13. Rich E. and Knight K. (1991) Introduction to
Artificial Networks. MacGraw-Hill Publications.

14. Stone M. (1974) Cross-validatory choice and
assessment of statistical predictions. Journal of
the Royal Statistical Society, vol. B36, pp. 111-
133.

15. Blake C. L. y Merz C. J. (1998) UCI Repository
of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.ht
ml Irvine, CA: University of California, Depart-
ment of Information and Computer Science.

16. Hue Xavier (1997) Genetic Algorithms for Opti-
mization. Edinburgh Parallel Computing Centre.
The University of Edinburgh.

