Analysis of Factors That Influence of The Use of M-Commerce by Americans of the Millennial Generation

Mauricio do Nascimento Perini, Fernanda Lazzari, Luciene Eberle, Gabriel Sperandio Milan
DOI: https://doi.org/10.21529/RECADM.2020006

Abstract

Over the last few years, there has been an increase in m-commerce (mobile commerce) sales by means of smartphones, which has had a significant impact on the electronic commerce of the countries. Thus, there is a need to investigate the factors that influence users’ Intention to Use m-commerce. Through an adaptation of the UTAUT (Unified Theory of Acceptance and Use of Technology) model, this study looked at the factors that affect the Usage Intention of Americans. The results reaffirm the relationship between the Expectation of Performance and the Facilitating Conditions in the Intention to Use. Besides, it confirmed the relationship between the Expectation of Performance and the Expectation of Effort, as well as between the Expectations of Effort in the Facilitating Conditions. Finally, it presents the moderating effect of age between social influence and the Intention to Use mobile m-commerce.


Keywords

e-commerce; m-commerce; UTAUT; intention of use; technology adoption


Compartilhe


References


Agudo-Peregrina, A. F., Hernández-Garcia, À., & Pascual-Miguel F. J. (2014). Behavioral intention, use behavior and the acceptance of electronic learning systems: differences between higher education and lifelong learning. Computers in Human Behavior, 34, 301-314.

Arcila, C., Calderín, M., & Aguaded, I. (2015). Adoption of ICTs by communication researchers for scientific diffusion and data analysis. El Profesional de la Información, 24(5), 526-536.

BagozziI, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: a holistic construal. Administrative Science Quarterly, 27(3), 459-489.

Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the bAcademic of Marketing Science, 40(1), 8-34.

Bearden, W. O., Netemeyer, R. G., & Haws, K. L. (2011). Handbook of marketing scales: multi-item measures for marketing and consumer behavior research. 3rd ed. Thousand Oaks: Sage Publications.

Bobsin, D., Visentini, M. S., & Rech, I. (2009). Em busca do estado da arte do UTAUT: ampliando as considerações sobre o uso da tecnologia. RAI – Revista de Administração e Inovação, 6(2), 99-118.

Broekhuizen, T. L. J., Delre, S. A., &Torres, A. (2011). Simulating the cinema market: how cross-cultural differences in social influence explain box office distributions. Journal of Product Innovation Management, 28(2), 204-217.

Brohan, M. (2016). Mobile commerce is now 30% of all U.S. e-commerce. Recuperado em 09 outubro, 2018, de https://www.internetretailer.com

Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.). Handbook of structural equation modeling (pp. 361-379). New York: The Guilford Press.

Byrne, B. M. (2016). Structural equation modeling with AMOS: basic concepts applications, and programming. 3nd ed. New York: Routledge.

Calderón, C. A., López, M., & Peña, J. (2017). El efecto condicional indirecto de la expectativa de rendimiento em el uso de Facebook, Google +, Instagram y Twitter por jóvenes. RLCS – Revista Latina de Comunicación Social, 72, 590-607.

Chen, J. (2011). The effects of education compatibility and technological expectancy on e-learning acceptance. Computer & Education, 57(2), 1501-1511.

Chong, A.Y. (2012). Predicting m-commerce adoption determinants: a neural network approach. Expert Systems with Application, 40(2), 523-530.

Cook, E. J., Randhawa, G., Sharp, C., Ali, N., Guppy, A., Barton, G., Bateman, A., & Grawford-White, J. (2016). Exploring the factor that influence the decision to adopt and engage with an integrated telehealth and telecare service in Cambridge Shire, UK: a qualitative study of patient. BMC Health Services Research, 16, 1-20.

Coursaris, C., & Hassanein, K. (2001). Understanding m-commerce: a consumer centric model. Quarterly Journal of Electronic Commerce, 3(3), 247-271.

Dommeyer, C. J. & Gross, B. L. (2003). What consumers know and what they do: an investigation of consumer knowledge, awareness, and use of privacy protection strategies. Journal of Interactive Marketing, 17(2), 34-51.

Economist, The. (2017). The Big Mac index. Recuperado em 20 meio, 2017, de http://www.economist.com/content/big-mac-index

Engotoit B., Kituyi, G. M., & Moya, M. B. (2016). Influence of performance expectancy on commercial farmers’ intention to use mobile-based communications technologies for agriculturalmarket information dissemination in Uganda. Journal of Systems and Information Technology, 18(4), 346-363.

Feijoo, C., Gómez-Barroso, J., Aguado, J., & Ramos, S. (2012). Mobile implication: Industry challenges and policy implication. Telecommunications Policy, 36(3), 212-221.

Farias, J. S., Pereira, D. S., Albuquerque, P. H. M., & Martins, M. S. (2014). A aceitação do Moodle na educação a distância: uma aplicação do modelo conceitual UTAUT. REAVI – Revista Científica do Alto do Itajaí, 3(4), 40-53.

Fávero, L. P., & Belfiore, P. (2017). Manual de análise de dados: estatística e modelagem multivariada com Excel, SPSS e Stata. Rio de Janeiro: Elsevier.

Fink, A. (2013). How to conduct surveys: a step-by-step guide. 5th ed. Thousand Oaks: Sage Publications.

Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobserved variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

García, A. V. C., Dujo, A. G., & Rodríguez, J. M. M. (2014). Factores learning en educación superior: adaptación del modelo UTAUT. Educación, 21, 217-240.

Garver, M. S., & Mentzer, J. T. (1999). Logistics research methods: employing structuralequation modeling to test for construct validity. Journal of Business Logistics, 20(1), 33-57.

Gorsuch, R. L. (2015). Factor analysis. New York: Routledge.

Gupta, B., Dasgupta, S. & Gupta, A. (2008). Adoption of ICT in a government organization in a developing country: an American study. Journal of Strategic Information Systems, 17(2), 140-154.

Hair Jr., J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis.7th ed. Upper Saddle River: Pearson.

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York: The Guilford Press.

Hazen, B. T., & Kung, L. (2014). Performance expectancy and use of enterprise architecture: training as an intervention. Journal of Enterprise Information, 27(2), 180-196.

Hill, W. W., Beatty, S. E., & Walsh, G. (2013). A segmentation of adolescent online users and shoppers. Journal of Services Marketing, 27(5), 347-360.

Jambulingam, M. (2013). Behavioral intention to adopt mobile technology among tertiary students. World Applied Sciences Journal, 22(9), 1.262-1.271.

Johnson, R. A., & Wickern, D. W. (2007). Applied multivariate statistical analysis. 6th ed. Upper Saddle River: Pearson / Prentice Hall.

Kline, R. B. (2011). Principles and practice of structural equation modeling. 3rd ed. New York: The Gilford Press.

Larentis, F., Giacomello, C. P., & Camargo, M. E. (2012). Análise da importância em pesquisas de satisfação através da regressão múltipla: estudo do efeito de diferentes pontos de escala. Análise – Revista Acadêmica da FACE, 23(3), 258-269.

Lin, G. T. R., & Sun, C. C. (2009). Factors influencing satisfaction and loyalty in online shopping: an integrated model. Online Information Review, 33(3), 458-475.

Lian, J., & Yen, D. C. (2014). Online shopping drivers and barriers for older adults: age and gender differences. Computers in Human Behavior, 37, 133-143.

Lu, J., Yu, C., Liu, C., & Wei, J. (2017). Comparison of mobile shopping continuance intention between China and USA from an espoused cultural perspective. Computers in Human Behavior, 75, 130-14617.

Luchini, A. C. B., & Matté, L. L. (2015). Millenial boys: identidade e comportamento de consumo de rapazes pertencentes à Geração Y. Ponto Revista Científica, 1(2), 20-27.

MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490-504.

Malhotra, N. K., Birks, D., & Wills, P. (2012). Marketing research: applied approach. 4th ed. New York: Pearson.

Mulaik, S. A. (2010). Foundations of factor analysis. 2nd ed. Boca Raton: Taylor & Francis Group.

Ng, E. S. W., Schweitzer, L., & Lyons, S. T. (2010). New generation, great expectations: a field study of the Millenial generation. Journal of Business and Psychology, 25(2), 281-292.

Osborne, J. W. (2013). Best practices in data cleaning. Thousand Oaks: Sage Publications.

Palvia, P. (2009). The role of trust in e-commerce relational exchange: a unified model. Information & Management, 46(4), 213-220.

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717-731.

Punj, G. (2011). Effect of consumer beliefs on online purchase behavior: the influence of demographic characteristics and consumption values. Journal of Interactive Marketing, 25(3), 134-144.

Pynoo, B., Devolder, P., Tondeur, J., Braak, J., Duyck, W., & Duyck, P. (2011). Predicting secondary school teachers’ acceptance and use of a digital learning environment: a cross-sectional study. Computers in Human Behavior, 27, 568-575.

Qingfei, M., Shaobo, J., & Gang, Q. (2008). Mobile commerce user acceptance study in China: a revised UTAUT model. Tsinghu a Science and Technology, 13(3), 257-264.

Roca, J.C., Chiu, C., & Martínez, F.J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies, 64, 683-693.

Rogers, E. M. (1995). Diffusion of innovations. 4th ed. New York: The Free Press.

Saleh, Z., & Mashhour, A. (2014). Consumer attitude towards m-commerce: the perceived level of security and the role of trust. Journal of Emerging Trends in Computing and Information Sciences, 5(2), 111-117.

San-Martín, S., Prodanova, J., & Jiménez, N. (2015). The impact of age in the generation of satisfaction and WOM in mobile shopping. Journal of Retailing and Consumer Services, 23, 1-8.

Sharma, A. (2002). Trends in internet-based business to business marketing. Industrial Marketing Management, 31(2), 77-84.

Sharma, R., & Yetton, P. (2007). The contingent effects of training, technical complexity, and task interdependence on successful information systems implementation. MIS Quarterly, 31(2), 219-238.

Smith, A. (2010). Home broadband. Washington: Pew Research Center.

Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics. 6th ed. Boston: Pearson.

Teo, T., Lee, C. B., & Chai, C. S. (2008). Understanding pre-service teachers’ computer attitudes: Applying and extending the technology acceptance model. Journal of Computer Assisted Learning, 24, 128-143.

Terres, M. S., Koetz, C. I., Santos, C. P., & Tem Caten, C. S. (2010). O papel da confiança na marca na intenção de adoção de novas tecnologias. RAI – Revista de Administração e Inovação, 7(4), 162-185.

United States Census Bureau. U.S. Census Bureau 2016. Recuperado em 20 novembro, 2016, de https://www.census.gov

Vannoy, S., & Palvia, P. (2010). The social influence model of technology adoption. Communications of the ACM, 53(6), 149-153.

Venkatesh, V., Brown, S. A., Maruping, L. M., & Bala, H. (2008). Predicting different conceptualization of system use: the competing roles of behavioral intention, facilitating conditions, and behavioral expectation. MIS Quarterly, 32(3), 483-502.

Venkatesh, V., Maruping, L. M., & Brown, S. A. (2006). Role of time in self-prediction of behavior. Organizational Behavior and Human Decision Processes, 100(2), 160-176.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly,36(1), 157-178.

Yang, K. (2010). Determinants of US consumer mobile shopping services adoption: implications for designing mobile shopping services. Journal of Consumer Marketing, 27(3), 262-270.

Yang, K., & Kim, H. Y. (2012). Mobile shopping motivation: an application of multiple discriminant analysis. International Journal of Retail & Distribution Management, 40(10), 778-789.

Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management & Data Systems, 115(2), 253-269.

Zhang, J. J., Yuan, Y., & Aarcher, N. (2002). Driving forces for m-commerce success. Journal of Internet Commerce, 1(3), 81-104.

Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model: a critical survey of consumer factors in online shopping. Journal of Electronic Commerce, 8(1), 41-62.

Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.