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ABSTRACT 

Developers of distributed open source projects make use of issue tracker tools to coordinate their work. 
These tools store valuable information, maintaining a log of relevant decisions and bug solutions. 
Finding the appropriate issues to contribute can be hard, as the high volume of data increases 
contributors’ overhead. This paper shows the importance of the content of issue tracker discussions in 
an open source project to build a classifier to predict the participation of a contributor in an issue. To 
design this prediction model, we used two machine learning algorithms called Naïve Bayes and J48. We 
used data from the Apache Hadoop Commons project to evaluate the use of the algorithms. By applying 
machine learning algorithms to the ten most active contributors of this project, we achieved an average 
recall of 66.82% for Naïve Bayes and 53.02% using J48. We achieved 64.31% of precision and 90.27% of 
accuracy using J48. We also conducted an exploratory study with five contributors that took part in 
fewer issues and achieved 77.41% of precision, 48% of recall, and 98.84% accuracy using J48 algorithm. 
The results indicate that the content of comments in issues of open source projects is a relevant factor 
to recommend issues to contributors. 

Key-words: open source; recommendation system; issue tracker; mining software repositories.  

RESUMO 

Os desenvolvedores de projetos de software livre distribuídos utilizam ferramentas de 
acompanhamento de pendências para coordenar o seu trabalho. Essas ferramentas armazenam 
informações importantes, mantendo registro de decisões importantes e soluções para bugs. Decidir 
sobre que pendências são as mais adequadas para se contribuir pode ser difícil, uma vez que a elevada 
quantidade de dados aumenta a pressão sobre os desenvolvedores. Este artigo mostra a importância 
do conteúdo das discussões que ocorrem por meio da ferramenta de acompanhamento de pendências 
em um projeto de software livre para a construção de um classificador para predizer a participação de 
um colaborador na solução de um problema. Para projetar este modelo de predição, utilizamos dois 
algoritmos de aprendizagem de máquina: Naïve Bayes e J48. Utilizamos dados do projeto Apache 
Hadoop Commons para avaliar o uso dos algoritmos. Aplicando algoritmos de aprendizado de máquina 
aos dez desenvolvedores mais ativos no projeto, obtivemos uma média de recall de 66,82% para Naïve 
Bayes e 53,02% usando J48. Obtivemos 64,31% de precisão e 90,27% de acurácia usando o J48. 
Também realizamos um estudo exploratório com cinco desenvolvedores que participaram na solução 
de um volume menor de problemas , obtendo 77,41% de precisão, 48% de recall, e 98,84% de acurácia 
usando o algoritmo J48. Os resultados indicam que o conteúdo dos comentários em pendências/ 
problemas em projetos de software livre representam um fator relevante com base no qual recomendar 
pendências aos desenvolvedores que colaboram com o projeto. 

Palavras-chave: software livre; sistema de recomendação; acompanhamento de pendências.  
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1 INTRODUCTION 

Open Source Software (OSS) projects raised academic and industry 
interest due to their distributed development method (RAYMOND, 1999). 
The voluntary effort of OSS developers spread around the world leveraged 
this interest. Contributors of OSS projects make use of source code 
repositories and issue/bug tracking systems to facilitate the planning and 
discussion among contributors. The use of these tools streamlines bug 
detection, discussion and fixing processes, improving the software quality 
(RAYMOND, 1999; ANVIK et al., 2005). These tools hold a lot of data, such 
as, source code, files’ change history, contributors’ information, and 
backlog. The history of messages submitted to the issue tracker maintains 
a log of important decisions and solutions, such as new features developed, 
bug solutions and design decisions. 

OSS contributors can use the information stored on the issue tracker 
as a rich project knowledge base to support their decisions. This 
knowledge base is fed by the projects contributors, who raise issues, 
proposing new features, and discussing these issues and features. To 
participate on these discussions, contributors find the issues and tasks 
that they can contribute to and send their comments or engage on fixing 
them. In large open source projects, the high volume of issues and 
comments makes it difficult for the contributor to choose the right ones to 
collaborate. For example, in March 2012, 1,622 messages were sent to 
Apache Hadoop issue tracker. Thus, contributors are likely to lose the 
opportunity to contribute to issues relevant to their profile. 

The problem of recommending relevant tasks to contributors is not an 
exclusive problem of open source software community. Cosley et al. 
(2007) proposed a system that performs intelligent task recommendation 
to users on Wikipedia. Abel et al. (2010) recommend relevant information 
to users in e-learning discussion forums. Our research aims to verify the 
relevance of comments content in a classifier for recommending issues to 
contributors. The classifier is based on the vocabulary used by a 
contributor in the messages submitted to the issue tracker. To analyze 
their content, each message is converted to a set of words (tokens). This 
format enables the definition of the vocabulary of a given contributor, 
issue, or for the entire project. 

To conduct our analysis, we collected data from the Apache Hadoop 
Commons project from the Apache Software Foundation repository. We 
aimed to answer the following research question: 

Is the vocabulary used in issues that a contributor participated effective to 
predict his/her participation in issues discussions? 

For each contributor, we had built a classifier that predicts his/her 
participation in a particular issue based on the Term Frequency-Inverse 
Document Frequency (TF-IDF) of the terms used in other issues he/she 
took part in. To address the research question we compared the results 
achieved when using J48 and the Naïve-Bayes algorithms, detailed in 
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Quinlan (1993) and Mitchell (1997). For each contributor, the issues were 
split into two classes: "Participate" or "Don’t participate”. Then, to analyze 
the contributor, we defined random training and test data sets. The 
proportion used to define the training set, and the test was 80:20. 

The rest of the paper is organized as follows. Section 2 presents the 
related work. Section 3 presents the research method. Results are 
presented in Section 4. Section 5 presents the discussions of the results. In 
Section 6, we present the threats to validity and in Section 7, the 
conclusions. 

2 RELATED WORKS 

Developers of OSS projects make use of web tools to maintain 
different types of communication related to the progress of the project. In 
large communities, the workload assigned to the more experienced 
developers in screening the information provided by the community is 
high (ANVIK et al., 2005). In this sense, several works of the literature 
address the workload issue by recommending which tasks a developer 
should contribute to or to which email a user should answer. 

Matter et al. (2009) present an automatic approach to triage bug 
reports, assigning the issue to the developer with the best expertise to 
handle that bug. The authors built an expertise model for each developer, 
based on the source code produced by him. They used the cosine distance 
between the expertise model and a vector of words built from the issue 
report to rank the developers. Authors reported a 33.6% precision and 
71.0% recall in the Eclipse project. Similar approaches were presented by 
Mockus and Herbsleb (2002) and Fritz et al. (2007), building expertise 
models based on artifact changes made by software developers.  

Siy et al. (2008) and Alonso et al. (2008) propose an expertise model 
based on the folders in which the source code is stored. In both studies, 
the authors consider that a developer tends to work on files in folders that 
are located nearby, and thus can provide a better answer to questions 
related to that part of the software. 

Our research considers the history of messages submitted by the 
developer to the issue tracker as the only factor to recommend their 
participation on a specific issue. A similar approach was presented by 
Cubranic and Murphy (2004). They proposed the use of a Bayesian 
classifier to support bug triage. During the classification process, the 
authors conducted a textual characterization considering the description 
of the bugs and obtained 30% accuracy applying the approach in a large 
OSS project. Canfora and Cerulo (2005) proposed an approach using an 
information retrieval technique that achieves recall of 20% on the Mozilla 
project. 

Anvik et al. (2006) present an approach that automates the process 
of bug reports triage. Based on the set of developers recommended by a 
SVN machine learning algorithm, the responsible for triaging the bugs can 
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manually select the more skilled developer to fix the bug. The algorithm 
was trained with textual data extracted from previous bug reports and 
labeled with the developer that fixed them. The precision achieved with this 
approach was 57% and 64% for Eclipse and Firefox projects, respectively. 

Ibrahim et al. (2010) developed a model that predicts the 
involvement of contributor in a mailing list thread. This model considers 
the historical behavior of contributors. The authors showed that the 
number of messages in a discussion, the contents, the sender, and the 
time when the message is submitted influence the behavior of a 
contributor. They used a Bayesian classifier and a decision tree and 
applied the approach to the mailing lists of Apache, PostgreSQL, and 
Python projects. As a result, their approach led to accuracy values ranging 
from 85% to 89.5% for the top 10 contributors. Bird (2012) built a single 
model for all developers based on a neural network to predict which 
emails a particular developer would be interested on. 

The approaches presented in this section seek to provide automated 
means to considerably reduce the workload of contributors in OSS projects 
and present characteristics that are similar to those presented in our 
research. However, our approach seeks to recommend issues to 
contributors based only on the vocabulary of the issues that the 
contributor previously contributed to. 

3 RESEARCH METHOD 

The method used in this research comprises three steps: data 
collection, data preparation, and data classification. The following 
subsections detail these steps. 

3.1 DATA COLLECTION 

To analyze and build the classifier, we first collected data from 
Hadoop projects issue tracker, available at the project’s website. To 
extract the data we built a tool that accesses the URL of the issues, 
respecting this pattern: “https://issues.apache.org/jira/browse/ 
<PROJECT_NAME>-<ISSUE_NUMBER>”. For each issue, we have extracted 
the following information: 

 description;  
 issue reporter; 
 creation date;  
 closing date; 
 status; 
 comments (containing author, date, and message). 

In the first step of this research, we have used a sample composed of 
the ten contributors that most commented issues. This sample represents 
the contributors that sent more than one third of the comments in the 
project. Table 1 summarizes the period and the amount of messages 
collected and analyzed in this study. It is worth to notice that we count as 
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message any comments submitted to an issue and the summary and 
description used to open an issue. 

Table 1. Summary of collected data 

 Hadoop Commons 

# of issues 8,288 

# of messages 70,057 

# of contributors 1,181 

Start date 01-2006 

End date 04-2012 

% of messages posted by top 10 
contributors 

35.7% 

Source: elaborated by the authors 

In Table 2, we present the participation rate and the number of issues 
that each of the top 10 contributors took part. It represents the 
percentage of issues in which the contributor sent at least one comment. 

 

Table 2. Participation rate for the top ten contributors 

Contributor Percentage of issues Number of issues 

Top-1 20.25% 1678 

Top-2 18.39% 1524 

Top-3 12.90% 1069 

Top-4 9.60% 796 

Top-5 9.41% 780 

Top-6 8.53% 707 

Top-7 8,52% 706 

Top-8 8,20% 680 

Top-9 8.13% 674 

Top-10 6.74% 559 

Source: elaborated by the authors 

To avoid ambiguity we have formally defined the collected data. A list 
of issues in a given project is defined as the set: 

 

ISSUESp = {i1, i2, i3,…, in}, 

in which n is the number of issues of project p. We have also 
represented the set of all contributors in a given project p as: 

 

AUTHORSp = {a1, a2, a3,…, am }, 

in which m is the number of contributors that submitted a comment 
to a given issue ik  ISSUEp, 1≤ k ≤ n. We also represented the comments 
of a project p as:  

 

Cp = {c1, c2, c3,...,cq }, 
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in which q is the amount of comments submitted to any ik  ISSUEp ,1 
≤ k ≤ n of a project p. An issue ik  ISSUEp, 1 ≤ k ≤ n can be represented 
by the triplet: 

 

ik = <Cik, dfirst, dlast>, 

in which Cik  Cp is a subset of all comments submitted to the issue ik , 
and dfirst and dlast are the dates when the first and last comments were 
sent, respectively. 

A contributor ar  AUTHORSp, 1 ≤ r ≤ m, is represented by the triplet: 
 

ar = <Car, dfirst, dlast>, 

in which Car  Cp is the subset of all comments submitted by a 
contributor in project p, and dfirst and dlast are the dates when the 
contributor sent his/her first and last comment, respectively. So, we can 
say that the set containing all comments of project p is equal to the union 
of all comments sent to all the issues, or, is equal to all comments send by 
all the contributors: 

 

Cp = Ci1  Ci2  ...  Cin = Ca1  Ca 2  ...  Cam , 

A comment c  Cp is represented by the triplet:  
 

c = < Tc, d, a >, 

in which Tc is the set of all tokens that are part of the comment c; d is 
the date when the comment was sent; and a  AUTHORSp is the 
contributor who sent the comment. We can represent the set of all project 
tokens as: 

 

WORLDp = T1  T2  ...  Tq | c  Cp. 

Similarly, we can represent all the tokens of the issue ik  ISSUEp as: 

TOKENSk = T1  T2  ...  Tw | c  Cik , 

in which w is the number of elements of Cik. 

3.2 DATA PREPARATION 

We conducted a data preparation process to organize and create the 
set WORLDp of the project. The first step was to identify and remove the 
comments entered by software systems (bots) from our sample.  

After that, we used Apache Lucene™1 (AL) to remove HTML tags from 
the comments, tokenize, remove stopwords, and stem. We used AL default 
tokenizer and stopwords list, and applied the stemmer proposed by Porter 
(1980). We considered URLs and artifacts full-qualified names as single 
tokens.  

                                            
1  http://lucene.apache.org/ 
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3.3 DATA CLASSIFICATION 

After preparing the data, we randomly split the ISSUESp into two 
subsets for each contributor: a training set containing 80% of the issues; 
and a test set containing 20% of the issues. To recommend the 
participation of a contributor, we used two different algorithms: J48 
decision trees and Naïve Bayes. Both algorithms are implemented in 
WEKA2, a knowledge analysis environment that implements many machine 
learning algorithms.  

A decision tree is a machine learning model that predicts the value of 
a target attribute of a new instance based on the values of other available 
attributes. The target attribute is known as dependent variable as its value 
depends on (or is defined by) the values of all the other attributes 
(independent variables). To classify a new instance, it is necessary to 
create a decision tree based on the values of the attributes of the training 
set. After generating the tree, the algorithm verifies the values of the 
attributes of a new instance, and navigates on the tree to predict the 
target attribute. 

The Naïve Bayes classification algorithm is based on Bayes rules of 
conditional probability. The algorithm uses all the attributes presented in 
the training set and analyses them individually, considering them equally 
important and independent. The classifier considers each of this attributes 
separately when it is classifying a new instance. 

3.3.1 Input Data Format 

Training and test sets were formatted as input matrices, as shown in 
Figure 1Erro! Fonte de referência não encontrada.. The lines of the 
matrices represent the elements of ISSUESp set. The columns, except the 
last one, represent the elements of the WORLDp set. The matrices were 
built following two rules. Rule 1 establishes cells fulfillment, except for the 
last column, which represent the target attribute.  

Rule 1: For a given issue ik  ISSUESp and a token tj  WORLDp 

𝑀[𝑖𝑘 , 𝑡𝑗] = 𝑡𝑓_𝑖𝑑𝑓(𝑖𝑘 , 𝑡𝑗) 𝑖𝑓  𝑡𝑗  ∈  𝑇𝑂𝐾𝐸𝑁𝑆𝑘 

We used two different means to fill the cells. We filled the WORLD 
with the Text Frequency – Inverse Document Frequency (TF-IDF) value to 
represent the importance of a given term. Therefore, to follow Rule 1, all 
tokens that are part of an issue have the value of its cell set to their TF-IDF 
value, defining issues’ weighted vocabulary.  
  

                                            
2  http://www.cs.waikato.ac.nz/ml/weka 
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  WORLDp  

  t1 t2 t3 . . . t|WORLDp| 
Target  

Attribute (TA) 
IS

S
U

E
S

p
 

i1 TF-IDF TF-IDF TF-IDF  TF-IDF 1 

i2 TF-IDF TF-IDF TF-IDF  TF-IDF 0 

i3 TF-IDF TF-IDF TF-IDF  TF-IDF 0 

.. .       

in TF-IDF TF-IDF TF-IDF  TF-IDF 1 

Figure 1. Data Input Matrix 
Source: adapted from Schwerz et al. (2012) 

The cells of column Target Attribute (TA), which represent the 
attribute to be predicted, are filled according to Rule 2. 

 

Rule 2: For a given issue ik  ISSUESp and a given contributor ar  AUTHORSp 

𝑀[𝑖𝑘 , 𝑇𝐴] {
1     𝑖𝑓  𝐶𝑖𝑘 ∩ 𝐶𝑎𝑟  ≠  ∅

0     𝑖𝑓   𝐶𝑖𝑘 ∩ 𝐶𝑎𝑟 =  ∅
 

We have applied two additional filters to the input data. The first was 
applied in both subsets (training and test), discarding the issues in which 
the contributor did not have the chance to participate. We defined the 
scope of an issue as the time interval between the first and the last message 
submitted on it. We also defined the scope of a contributor as the time 
interval between his first and last message submitted to the project. This 
filter is formalized as Rule 3. 

 

Rule 3: For a given issue ik  ISSUESp and a contributor ar  AUTHORSp 

{
𝑑𝑖𝑠𝑐𝑎𝑟𝑑(𝑖𝑘), 𝑖𝑓 𝑖𝑘[𝑑𝑙𝑎𝑠𝑡] < 𝑎𝑟[𝑑𝑓𝑖𝑟𝑠𝑡] 𝑂𝑅 𝑖𝑘[𝑑𝑓𝑖𝑟𝑠𝑡] > 𝑎𝑟[𝑑𝑙𝑎𝑠𝑡]

𝑘𝑒𝑒𝑝(𝑖𝑘),    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                           
 

By following this approach, we identified six types of issue scopes, as 
shown in Figure 2.  

 

Figure 2. Issue types 

Source: adapted from Schwerz et al. (2012) 
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Type 1 issues are those that have their creation date before the 
beginning of contributor’s scope and their last message sent within 
contributor’s scope. Type 2 issues are those issues that have their first 
message sent within contributor’s scope and the last message sent after 
the end of contributors’ scope. Issues classified as Type 3 are totally inside 
the contributor’s scope period. Type 4 issues were created before a 
contributor’s scope and have their last message sent after the end of the 
contributor’s scope. Issues classified as Type 5 are created and have their 
last message sent before the contributor’s scope. Finally, type 6 issues are 
created after the contributor’s scope period.  

We understand that a contributor had the chance to contribute and 
discuss on issues of types 1, 2, 3 and 4 as the contributor’s scope 
intercepts the issues’ scope. The issues classified as types 5 or 6 were not 
considered as they are totally outside the contributor’s scope, and the 
contributor did not have the chance to join those discussions.  

The second filter was applied only to the test set. When predicting the 
participation of a given contributor we have discarded the messages sent 
by him/her in each issue. We have applied this approach based on the 
premise that the tokens used by the contributor himself/herself can 
introduce some bias to the prediction results as can be part of historical 
contributor’s vocabulary.  

3.3.2 Results evaluation 

As we are dealing with a typical usage of machine learning, we use 
the confusion matrix to evaluate precision, recall, and accuracy of the 
results. Table 3 depicts a confusion matrix, in which we identify four types 
of results: true positive (TP), false positive (FP), true negative (TN), and 
false negative (FN).  

Table 3. Confusion matrix 

Classified as 

Known instances 

Participate 
Do not 

participate 

Participate TP FP 

Do not 
participate 

FN TN 

Source: adapted from Schwerz et al. (2013) 

In the context of classification, precision metric is the number of 
instances correctly classified as a given class, divided by the total number 
of instances classified as belonging to that class. A precision value of 
100% indicates that every instance that was classified as a given class 
was correctly classified. Recall is the number of instances of a class 
correctly classified over all of the instances that actually belong to that 
class. A recall value of 100% would indicate that every instance of a class 
was classified as belonging to that class. 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
         𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑑𝑜𝑁𝑜𝑡𝑃𝑎𝑟𝑡𝑖𝑝𝑎𝑡𝑒 =

𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

 

𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
         𝑟𝑒𝑐𝑎𝑙𝑙𝑑𝑜𝑁𝑜𝑡𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒 =

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

 

Accuracy is measured by using the true values (true positives and 
true negatives). Accuracy values close to 100% indicate that the results 
obtained in the classification are close to those previously known.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
    

 

Therefore, the metric precisionparticipate indicates the probability of an 
issue classified as an instance of class “Participate” actually being of this 
class; and the metric recallparticipate indicates the probability of an issue to 
which a contributor ak sent a message being classified as an instance of 
class “Participate”. The metrics precisiondonotParticipate and recalldonotParticipate 

follow the same understanding. Accuracy can be understood as a quality 
measure on the true values, independently to which class they belong. 

4 RESULTS 

In Tables 4 and 5, we present recall and precision metrics of the 
results obtained when we applied Naïve Bayes and J48 algorithms. We 
applied the algorithms to the top ten contributors of the project, as 
suggested by Ibrahim et al. (2010). We weighted their vocabularies using 
Text Frequency – Inverse Document Frequency (TF-IDF), considering each 
issue a document.  

In Table 4, we present the recall and precision obtained when 
recommending a contributor to “Participate” of an issue. In general, the 
results presented by the J48 algorithm were better than those presented 
by Naïve Bayes algorithm. Cells with dark background represent the 
higher value comparing J48 and Naïve Bayes. For the top ten contributors, 
J48 presented an average recall of 53.9% and a precision of 64.8%, while 
for the Naïve Bayes, the values were 66.8% and 15.9%. Even presenting 
higher recall, we can see that the Naïve Bayes performs very badly in 
terms of precision. It means that Naïve Bayes is recommending a greater 
number of appropriate issues, however it is also recommending a huge 
amount of impropriated issues (in average 85%, ranging from 70% for 
Top-1 to 91% for Top-7).  

In Table 5, we present the results of recall and precision for the class 
“Do not participate”. As the amount of issues that a contributor does not 
take part is much higher than those that he takes part in (for the Top-1 the 
proportion is 80:20, and, for the Top-10, it is around 93:7), the recall and 
precision for “Do not participate” seems to be high. This numbers could be 
presented as a good result; however our goal is to recommend issues that 
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could be interesting to a contributor. Thus, J48 algorithm presents better 
results than Naïve Bayes.  

Table 4. Recall and precision for top ten contributors  
recommendations on the class Participate 

Contributor 
Naïve Bayes J48 

Precision Recall Precision Recall 

Top – 1 0.296 0.715 0.645 0.595 

Top – 2 0.204 0.689 0.637 0.525 

Top – 3 0.190 0.656 0.680 0.546 

Top – 4 0.145 0.745 0.642 0.479 

Top – 5 0.148 0.639 0.662 0.632 

Top – 6 0.105 0.573 0.529 0.371 

Top – 7 0.086 0.615 0.571 0.410 

Top – 8 0.102 0.641 0.615 0.523 

Top – 9 0.178 0.737 0.688 0.628 

Top – 10 0.124 0.545 0.714 0.446 

Average 0.159 0.668 0.648 0.539 

Source: elaborated by the authors 

 

Table 5. Recall and precision for top ten contributors  
recommendations on class Do not participate 

Contributor 
Naïve Bayes J48 

Precision Recall Precision Recall 

Top – 1 0.870 0.528 0.890 0.909 

Top – 2 0.895 0.497 0.914 0.944 

Top – 3 0.870 0.451 0.914 0.950 

Top – 4 0.937 0.462 0.938 0.967 

Top – 5 0.922 0.535 0.954 0.959 

Top – 6 0.907 0.460 0.932 0.963 

Top – 7 0.932 0.445 0.951 0.974 

Top – 8 0.929 0.454 0.955 0.968 

Top – 9 0.933 0.520 0.948 0.960 

Top – 10 0.902 0.522 0.934 0.978 

Average 0.909 0.485 0.931 0.955 

Source: elaborated by the authors 

Figure 3 and Table 6 present a comparison of the accuracy of Naïve 
Bayes and J48. As J48 outperformed Naïve Bayes in both classes of 
prediction, the result for accuracy is straightforward. Figure 3 gives us a 
graphical demonstration on the difference among the algorithms. 
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Figure 3. Accuracy: Naïve Bayes versus J48 

Source: elaborated by the authors 

 

Table 6. Accuracy: Naïve Bayes versus J48 

Contributor 
Naïve Bayes J48 

Accuracy Accuracy 

Top – 1 0.569 0.841 

Top – 2 0.527 0.878 

Top – 3 0.484 0.883 

Top – 4 0.493 0.914 

Top – 5 0.547 0.923 

Top – 6 0.471 0.904 

Top – 7 0.458 0.929 

Top – 8 0.470 0.929 

Top – 9  0.546 0.919 

Top – 10 0.525 0.919 

Average 0.508 0.902 

Source: elaborated by the authors 

 

Our results demonstrate that J48 is a better predictor when dealing 
with vocabularies of contributors to recommend issues.  

5 DISCUSSION 

In our analysis, we used the comments submitted to the issue tracker 
of the Hadoop Commons project. We restricted the sample to the ten 
contributors that commented more issues. The numbers of recall and 
precision presented to the class “Participate” indicate that J48 can be used 
satisfactorily as a recommender, with an average accuracy of 90.27%. 
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One can notice that Naïve Bayes outperforms J48’s recall. However, if 
we check the precision of the contributors, we can see that it is about 10% 
to 20%. Therefore, Naïve Bayes can recommend more true positives, but 
80% to 90% of the issues recommended are false positives. In other 
words, applying Naïve Bayes overloads contributors with many issues that 
do not interest to them. The numbers of correctly recommended and 
misclassified instances are presented in Table 7. As one of our goals is to 
reduce overload, we can affirm that J48 does the job better than Naïve 
Bayes in this case. 

Table 7. Comparison of correctly and incorrectly  
recommendations for class Participate 

Contributor 
Naïve Bayes J48 

Misclassified Correct  Misclassified Correct  

Top – 1 565 238 109 198 

Top – 2 654 168 73 128 

Top – 3 611 143 56 119 

Top – 4 725 123 44 79 

Top – 5 571 99 50 98 

Top – 6 604 71 41 46 

Top – 7 765 72 36 48 

Top – 8 722 82 42 67 

Top – 9 467 101 39 86 

Top – 10 430 61 20 50 

Source: elaborated by the authors 

Table 6 presented in Section 4 shows the result of the approach using 
J48 with a high accuracy, varying from 84.1% to 92.9%. However, the 
classifiers present lower recall values to class Participate than to class Do 
not participate. We understand that this is a deficiency of the classifiers, 
since when we do not recommend an issue to which a contributor should 
participate we may be losing his skills and knowledge to discuss or help fix 
the issue.  

We have applied the same approach as other recommendation 
studies that used OSS projects data and compared the recommendations 
to the actual participation on the issues. This should not represent the 
most accurate test data. In OSS projects, a volunteer collaborator is not 
obligated to keep contributing and searching for issues to collaborate. For 
example, there should be issues that were predicted by the algorithms 
and the contributor should have participated, but he/she was not able to at 
that time. A collaborator that left the project for a period could have 
missed some interesting issues.  

The results obtained are valid just for the top ten contributors, which 
took part in a high number of issues. The Top-1 contributor submitted 
comments to more than 1600 issues, and the Top-10 to 534 issues. To 
verify if the obtained pattern is valid also for contributors that took part in 
fewer issues, we conducted the same steps of the method for other five 
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contributors. For this exploratory study, we chose the subjects following 
these steps: (i) retrieve the number of issues that each contributor of the 
project took part; (ii) discard all contributors that participated in just one 
issue; (iii) perform a quartile analysis; and (iv) select the five top 
contributors of the third quartile. They have contributed to 52 or fewer 
issues.  

The results for this exploratory study are presented in Table 8. The 
table shows the recall and precision of Naïve Bayes and J48 algorithms for 
the class Participate and also the overall accuracy of both algorithms. 
Comparing to the Top-10 contributors we can see that the precision is 
presenting better results, in average 12% better. It is also possible to 
notice that recall is around 50%. In two cases, J48 achieved 100% 
precision with high recall values. For ThirdQuartile-3, the recall was 75%, 
recommending 6 out of 8 possible instances. For ThirdQuartile-5, the recall 
was 54.5%, with 6 issues correctly predicted out of 11 possible. The 
accuracy present outstanding results for J48 (98.8%), however this value is 
influenced due to the class imbalance. The number of issues on class Do 
not participate is much larger than those on class Participate (the 
proportion is around 1:160), what considerably influences the accuracy 
measure.  

Table 8. Recall and precision for recommendations made  
to the third quartile contributors 

Contributor 

Naïve Bayes J48 

Precision 

Participate 

Recall 

Participate 

Accuracy Precision 

Participate 

Recall 

Participate 

Accuracy 

ThirdQuartile-1 0.034 0.538 0.653 0.800 0.308 0.983 

ThirdQuartile-2 0.027 0.500 0.579 0.800 0.400 0.984 

ThirdQuartile-3 0.003 0.125 0.560 1.000 0.750 0.998 

ThirdQuartile-4 0.000 0.000 0.609 0.444 0.500 0.987 

ThirdQuartile-5 0.018 0.182 0.634 1.000 0.545 0.984 

Average 0.013 0.300 0.602 0.774 0.480 0.988 

Source: elaborated by the authors 

In general, J48 stills performing satisfactorily, with a very high 
precision rate and a fair recall. As a preliminary result, we can say that the 
classifier maintained its fair results even for contributors with fewer 
contributions. To find a pattern for a project or an ecosystem it would be 
necessary to conduct a case study covering all the contributors of a 
project and more projects. 

On previous works (SCHWERZ et al., 2012; 2013) we conducted the 
analysis considering the vocabulary of the issues without assigning weight 
to the terms. We created the WORLD using a binary scale to determine if a 
term appeared or not during a discussion of an issue. Table 9 presents the 
comparison among the best results obtained on the previous study and 
the results obtained with J48 in the current study (using TF-IDF). We can 
see that recall values for the current study are much better, doubling the 
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value in some cases. Even with lower results for precision, we can say that 
the current approach can lead to better results. Checking the raw number 
of issues classified correctly for top ten in total, we have 949 for the 
current approach, versus 585 using the previous approach. For example, 
for Top-1 using the current approach, we retrieved 198 correct instances, 
while in the previous approach we retrieved just 100.  

Table 9. Comparing results with our previous work (SCHWERZ et al., 2013) 

 Current Approach Previous approach  

Contributor 

J48 

 

J48 

 

Precision 
Participate 

Recall 
Participate  

Accuracy 
Precision 
Participate  

Recall 
Participate 

Accuracy 

Top – 1 0.645 0.595 0.841 0.763 0.303 0.826 

Top – 2 0.637 0.525 0.878 0.619 0.303 0.843 

Top – 3 0.680 0.546 0.883 0.733 0.368 0.884 

Top – 4 0.642 0.479 0.914 0.610 0.303 0.909 

Top – 5 0.662 0.632 0.923 0.750 0.342 0.912 

Top – 6 0.529 0.371 0.904 0.527 0.204 0.888 

Top – 7 0.571 0.410 0.930 0.681 0.405 0.936 

Top – 8 0.615 0.523 0.929 0.907 0.390 0.953 

Top – 9 0.688 0.628 0.919 0.841 0.390 0.916 

Top – 10 0.714 0.446 0.919 0.760 0.543 0.935 

Average 0.648 0.539 0.899 0.711 0.340 0.898 

Source: elaborated by the authors 

When we compare our results with Ibrahim et al. (2010), we found 
that using simple textual analysis brings similar results as they obtained. 
Their accuracy for the top ten contributors, when recommending to which 
mailing list threads they should contribute was 85% to 89%. Our results in 
terms of accuracy are very similar, as we achieved accuracy ranging from 
84.1% to 92.9%. Differently from their work, we are not using any 
contextual or profiling factors to recommend participation. We suspect 
that better results can be obtained if we use other contextual factors to 
profile a contributor – like those presented in Matter et al. (2009) and 
Ibrahim et al. (2010). 

6 THREATS TO VALIDITY AND FUTURE WORK 

The results of our analysis are specific for the analyzed project and 
cannot be directly generalized. Projects have different characteristics due 
to the organizational structure or application domain, but the same 
method can be applied to identify what algorithm and configuration best 
suits each case. As future work, an analysis with more projects or using 
the whole Apache Foundation ecosystem may look for patterns among 
different projects and find results that are more generalizable.  
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We did not investigate the real reasons of false positives (FP) and 
false negatives (FN). As we are dealing with a large OSS project, FPs can 
be caused by many reasons, including the unavailability of the volunteer 
contributors at the time the issue was under discussion, the nature of the 
issue (some issues just report a problem already fixed), or the overload of 
information that make it difficult for contributors to find issues of interest. 
We tried to reduce this threat by reducing the scope of issues to the 
period between the first and last messages sent by the contributors. A 
manual analysis on false positives and false negatives can explain some of 
the recommender errors. It is also possible to look for the long periods 
when the volunteers did not contribute to the project and verify if the FPs 
occurred in these periods.  

We just analyzed two machine algorithms with no tuning to conduct 
our study. We can check the efficiency of other algorithms and different 
settings of these algorithms. There is also the possibility of using raw Term 
Frequency (TF) instead of using TF-IDF to verify if it brings better results, 
once, according to Canfora et al. (2012), TF-IDF is useful to discriminate 
different corpus rather than match similar corpus. 

The method used to extract the tokens that compound WORLDp set 
can be better explored, mainly regarding the source code sent in the 
comments. We also can combine the vocabulary with other factors, as 
described at the end of Section 5. 

Even conducting the exploratory study presented on Section 6, we 
cannot say that our approach will present similar results to all the 
contributors of this project. We can also say that the classifiers applied 
need to receive historical data as input, so they cannot produce the same 
results for newcomer contributors (cold start problem). 

Regarding future works, in addition to what we presented before, we 
understand that other factors that support contributors profiling – such as 
social, work rhythms and temporal analysis – can be combined to the 
vocabulary to bring better results. We also aim to conduct studies that 
apply social network analysis to the issues in order to recommend based 
on previous social interactions.  

7 CONCLUSIONS 

Although source code repositories and issue tracking systems facilitate 
the management of activities in OSS projects, the large amount of 
information can overload more experienced contributors. In particular, 
choosing appropriate issues to contribute can be a complex and time-
consuming activity. In this paper, we presented an alternative for 
minimizing the negative effects of this activity by exploring the history of 
messages sent to issues to recommend appropriate issues to contributors. 

The results obtained in this paper indicate that the content of 
comments posted in issues of an OSS project is an important factor to 
build an issue recommender for contributors. Based on this factor, we 
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showed that it is possible to use well known classification algorithms to 
reduce the overload of a contributor, indicating which issues should 
interest him/her. By using J48 algorithm to classify the issues, we achieved 
average precision of 64.31%, an average recall of 53.02% and accuracy of 
90.27%.  

We recognize that the recall values for J48 still need to be improved 
to recommend better results for contributors. However, we improved the 
recall if we compare to the results obtained in our previous study that 
used the same algorithms, but different inputs. We could see that applying 
the same approach to contributors that are not the top ten we keep 
obtaining satisfactory values of recall and precision using J48. For two 
contributors we had 100% recall and precision. Therefore, we have 
evidence that the J48 classifier, using information about the vocabulary, 
can also bring satisfactory results to contributors that took part in fewer 
issues.  
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