
Revista hospedada em: http://revistas.facecla.com.br/index.php/reinfo
Forma de avaliação: double blind review

Esta revista é (e sempre foi) eletrônica para ajudar a proteger o meio ambiente, mas,
caso deseje imprimir esse artigo, saiba que ele foi editorado com uma fonte mais
ecológica, a Eco Sans, que gasta menos tinta.

This journal is (and has always been) electronic in order to be more environmentally
friendly. Now, it is desktop edited in a single column to be easier to read on the screen.
However, if you wish to print this paper, be aware that it uses Eco Sans, a printing font
that reduces the amount of required ink.

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 1
doi:10.5329/RESI.2014.1302002

THE ALGORITHMIC AUTOREGULATION SOFTWARE
DEVELOPMENT METHODOLOGY

A METODOLOGIA DE DESENVOLVIMENTO DE SOFTWARE
AUTORREGULAÇÃO ALGORÍTMICA

(artigo submetido em setembro de 2013)

Renato Fabbri
Main Founder, LabMacambira.sf.net (AA)

D. Sc. Candidate. São Carlos Physics Institute
– University of São Paulo (IFSC/USP)

fabbri@usp.br

Vilson Vieira

Tech Lead, LabMacambira.sf.net (AA)
Graduate student, São Carlos Physics

Institute – University of São Paulo (IFSC/USP)
vilsonvieira@usp.br

Danilo Shiga
Software Engineer, LabMacambira.sf.net (AA)

daniloshiga@gmail.com

Alexandre Negrão
Software Engineer, LabMacambira.sf.net (AA)

Undergraduate student, Institute for
Computer and Mathematical Sciences,

University of São Paulo (ICMC/USP)
bzum07@gmail.com

Ricardo Fabbri
Professor Adjunto, Polytechnic Institute – Rio

de Janeiro State University (IPRJ/UERJ)
Tech Lead, LabMacambira.sf.net (AA)

rfabbri@iprj.uerj.br

Daniel Penalva
Research Scientist, LabMacambira.sf.net (AA)

dkajah@gmail.com

Marcos Mendonça
Software Engineer, LabMacambira.sf.net (AA)

marcosm@gmail.com

Lucas Zambianchi
Software Engineer, LabMacambira.sf.net (AA)

kamiarc@gmail.com

Gabriela Salvador Thumé
Software Engineer, LabMacambira.sf.net (AA)
Graduate Student, Institute for Computer and

Mathematical Sciences,
University of São Paulo (ICMC/USP)

gabithume@gmail.com

ABSTRACT

We present a new self-regulating methodology for coordinating distributed team work
called Algorithmic Autoregulation (AA), based on recent social networking concepts and
individual merit. Team members take on an egalitarian role, and stay voluntarily logged
into so-called AA sessions for part of their time (e.g. 2 hours per day), during which they
create periodical logs — short text sentences — they wish to share about their activity
with the team. These logs are publicly aggregated in a Website and are peer-validated
after the end of a session, as in code review. A short screencast is ideally recorded at the
end of each session to make AA logs more understandable. This methodology has shown
to be well-suited for increasing the efficiency of distributed teams working on what is
called Global Software Development (GSD), as observed in our experience in actual real-
world situations. This efficiency boost is mainly achieved through 1) built-in asynchronous
on-demand communication in conjunction with documentation of work products and
processes, and 2) reduced need for central management, meetings or time-consuming
reports. Hence, the AA methodology legitimizes and facilitates the activities of a
distributed software team. It thus enables other entities to have a solid means to fund
these activities, allowing for new and concrete business models to emerge for very
distributed software development. AA has been proposed, at its core, as a way of
sustaining self-replicating hacker initiatives. These claims are discussed in a real case-
study of running a distributed free software hacker team called Lab Macambira.

Key-words: global software development; distributed development; hacking; free
software.

2 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

RESUMO

O artigo apresenta uma nova metodologia para a coordenação do trabalho de uma
equipe dispersa fisicamente chamada Autorregulação algorítmica (AA). A metodologia se
baseia em conceitos recentes de redes sociais e mérito individual. Os membros da equipe
assumem papéis igualitários e se mantêm logados voluntariamente a sessões de AA por
parte do seu tempo (por exemplo, duas horas por dia), criando logs periódicos — frases
curtas — que desejam compartilhar com os demais envolvidos nas atividades da equipe.
Estes logs são agregados publicamente em um website e são validados pelos pares após
o fim da sessão, da mesma forma que se faz na revisão de código. Preferencialmente, um
breve screencast é gravado ao final de casa sessão para tornar os logs de AA mais
compreensíveis. Esta metodologia se demonstrou adequada para aumentar a eficiência
de equipes dispersas fisicamente trabalhando em projetos de Desenvolvimento de
Software Global (GSD), conforme observado em nossa experiência em situações de uso
cotidiano. O aumento de eficiência é obtido principalmente por meio de: 1) comunicação
assíncrona e sob demanda em conjunto com a documentação dos produtos do trabalho e
processos, e 2) necessidade reduzida de gestão centralizada, reuniões ou relatórios que
consomem tempo. Assim, a metodologia AA legitima e facilita as atividades de uma
equipe de desenvolvimento de software distribuída. Ela possibilita que outras entidades
disponham de meios para financiar essas atividades, possibilitando que novos e
concretos modelos de negócio se tornem possíveis para desenvolvimentos de software
muito distribuídos. A AA foi proposta, em sua essência, como uma forma de possibilitar a
auto-replicação de iniciativas de atividade hacker. Estes argumentos são discutidos com
base em um estudo de caso real de atuação de uma equipe hacker de software livre
distribuído chamada Lab Macambira.

Palavras-chave: desenvolvimento de software global; desenvolvimento distribuído;
hacking; software livre.

1 INTRODUCTION

One of the defining features of modern times is the widening
geographical distribution of software teams (LAST, 2003) leading to what
is called Global Software Development (GSD) (GERMAN, 2003; FRYER AND
GOTHE, 2008; BEGEL, 2008). Paramount examples stem from the free
software movement. Projects and institutions such as Mozilla Foundation
have several employees, thousands of volunteers and freelance
developers distributed across many countries. The same holds for GNOME
(GERMAN, 2003), OpenBSD, MySQL or Apache Software Foundation, to cite
a few of the most active projects1. Their commitment to the public
transparency of source code and development processes places them at
the global scale of the open Internet. GSD has also seen a growing
demand in virtually every other niche of the software industry, even
among traditional companies limited to proprietary licensing. This
phenomenon is attributed to a variety of factors such as the opportunity to
harness a much larger labor pool, the massive globalization of software
companies and the search for cheaper production costs (KOMI-SIRVIO,
2005).

Despite the clear advantages of GSD, it is often associated with
difficult problems as series of qualitatively new situations arise. For
instance, the problem of coordinating and funding free software initiatives

1 The open source network Ohloh has a more complete and constantly updated list of

the most active projects on-line at www.ohloh.net.

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 3
doi:10.5329/RESI.2014.1302002

on an expressively larger scale than currently practiced is widely held as a
tough challenge. Distributed teams are highly heterogeneous, comprising
not only volunteers and very experienced developers, but also contractors
and freelancers from different backgrounds and cultures. These
observations are founded on the factors suggested by Carmel and Agarwal
(2001) as main difficulties for GSD: geographic, temporal and cultural
differences. In the case of free or open software projects, all such factors are
exacerbated, especially given the need to reliably profit in a wildly
heterogeneous environment in order to scale up.

Another problem faced by modern software companies and other
collectives is the rise of frequent ineffective meetings, which are seldom
focused on the particular interest of any attendant. As a result, it has
become the norm to take part in too many meetings with open laptops and
flashing mobile gadgets, which can be unproductive. Software developers
have a valuable creative tendency – they find it enjoyable to code, to be
hands-on with their project, to do what they are best at. They despise
having to forcibly stop for meetings or to do other bureaucratic activities
such as writing lengthy reports to justify their funding (THOMPSON, 2012).
In GSD, there is a heavier demand on team coordination, which, in the
absence of a proper methodology, can lead to excessive and ineffective
on-line meetings and bureaucracy (FRYER AND GOTHE, 2008). Intrinsic
geographic, temporal and cultural differences lead to unavoidable issues
such as network latency, calling for a different strategy.

To address these matters is the purpose of the AA methodology
reported here and the associated software system for coordinating
distributed team work. Team members take on an egalitarian role, and
stay voluntarily logged in the system for part of their time (e.g. 2 hours
per day), during which they log a periodical short text sentence or
microlog — similar to a ‘tweet’ from Twitter — to sample the status of their
activity. Logging is carried out using a series of client UI alternatives: UNIX
shell commands, native GUI or Web page, conventional social network
posts, or chat messages to a log bot listening to IRC, GTalk, G+, and
others. These “microblog sentences” are publicly aggregated and
validated by other team members.

Through AA, the community has a methodology and an associated
system to help implement and validate the activities of a distributed
software team. This forms a participation architecture (WEST; O'MAHONY
2008) designed to legitimize financial support for scaling up the activity of
distributed development teams. The AA methodology is especially useful
for coordinating distributed and decentralized team work, providing
effective means to asynchronously update different team members
without the need for synchronous unproductive meetings, while ensuring
baseline productivity.

A brief overview of current work in GSD methodologies related to AA
is presented in section 2. In section 3 the most relevant characteristics of
the AA methodology are outlined. In section 4 we report an actual use

4 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

case of AA for coordinating a team of nine paid developers during the
second half of 2011, as well as a broader use case of AA from 2012 to
2014. Section 5 lists overall conclusions and indications of future
possibilities for the practical use of AA in other types of teams of software
developers or organizations working on non-software distributed activities.

2 RELATED WORK

There has been a large amount of research on methodologies to deal
with distributed teams of developers. Although this paper focuses on GSD,
many of its principles can be brought back down to the conventional
setting of smaller teams of developers working at nearly the same place,
time zone and with minor cultural differences, depending on the specific
context and demands. Moreover, ‘distributed development’ is generally
regarded as being global, which is not always true. For instance, AA has
been effectively applied to teams whose members live in the same city
but work at different timeframes at different locations, see section 4. Even
smaller groups of developers working on the same building could use GSD
methodologies (or an adapted subset) to their benefit, e.g., to account for
different work habits, minimize formal meetings, document work process
and history, and so on. A thorough survey of distributed GSD methodologies
is beyond the scope of this paper; this section presents but a brief
overview.

Various methodologies for GSD were built around the factors that
affect distributed teamwork. As proposed by Carmel (1999), these comprise
three distances: geographical, cultural and temporal. First, geographical
distance handicaps (i) coordination, the act of integrating all the tasks
distributed between units (CARMEL AND AGARWAL, 2001); (ii) control, or
the process to maintain specific goals, policies or quality levels; and (iii)
communication. All those factors are correlated, e.g., a team needs to
have clear communication to work on tasks of a specific problem.

Second, cultural distance encompasses differences in organizational
and natural culture. Spoken language, individual and ethnic values are
common dimensions impacting such distance. Some companies prefer to
allocate development units to foreign locations with minimum cultural
variance, e.g., an American company may prefer Ireland due to spoken
language similarity (CARMEL AND AGARWAL, 2001). Third, temporal
distance hampers synchronous communications such as telephone or
video conferences. Units of developers working on different time-zones are
concerned with managing their agendas in face of temporal dissimilarity.

Targeting geographical distance, Carmel and Agarwal (2001) suggest
a strategy to mitigate reliance on synchronous collaboration. Their
approach divides the software life-cycle into levels of complexity, each
having a degree of collaboration. For example, some developers working
on a project with high collaboration demands should use the follow-the-sun
approach: when concluding the work day, they pass their work to the team
working in another time-zone. Other tactics are suggested by the same

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 5
doi:10.5329/RESI.2014.1302002

author to deal with the three distances, such as separating foreign units of
developers in time-zone bands.

Battin et al. (2001) propose and discuss their experiments using
specific methodologies created for the distributed development centers
from Motorola (at the time having 25+ software development centers
worldwide). These methodologies included constant communication with
critical units, incremental integration and schedules based on time-zones
of developers distributed over 6 countries from 3 different continents.

In considering free software projects, similar factors are present and
more specialized methodologies arise. German (2003) provides a concise
review of the methodologies used by the GNOME project, one of the most
active of all free software projects. The manuscript is centered on software
architecture. It begins by explaining that GNOME is separated into
modules (76 on version 2.4, to be precise) and each module has one
maintainer who divides her modules into separate parts within which other
developers can work on independent tasks, along other responsibilities. All
development is carried out using modern standard free software
engineering tools: a bug tracker for bug and issue management, mailing
lists and Internet Relay Chat (IRC) for discussion and communication, and
a version control system like Git or Mercurial. Periodic (commonly yearly)
conferences like GUADEC are held for face-to-face meetings and are
hosted in a different location each time, a common practice on other free
and open source projects.

Other major free and open source projects employ similar development
strategies and tools, with relatively minor variations (REIS AND FORTES,
2003). The Scilab team, who needs to tackle a complex software system
related to Matlab, employs similar software engineering tools as GNOME
but focuses on Git and code reviews. There is also a yearly periodic
conference ScilabTEC in addition to adhoc meetings with freelancers.
Major development-related modifications to Scilab are proposed by the
greater community through Scilab enhancement proposals – SEPs, which
are requests for enhancements augmented with design proposals.

We have collaborated with Scilab directly as individual developers,
through Google Summer of Code, and through an instance of freelance
development funded by the French company Scilab Enterprises to our
collective Lab Macambira and universities in Brazil. Freelance development
was centered on implemented features – main developers set the desired
features to be implemented, and the freelancers stipulate a price to be
charged per feature. Some payment was anticipated before the work
started, and the other half secured only when the features had been fully
implemented. Deadlines were motivated by payment or else set according
to milestones for the next release. The development process was
otherwise loosely managed and undocumented, so that ambitious goals
were avoided due to the risk of no payment or side products of hard work.

Most other major free and open source software such as Blender for
3D modeling, the PureData real-time multimedia programming project and

6 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

the VXL computer vision libraries, all of which we have helped develop,
employ the aforementioned tools except for code review. Similar to
GNOME, these software systems are stable enough to be well organized
into conceptual modules and file structure, enabling most changes and
communication to be localized to module maintainers or past committers.
Collective goals and major changes are coordinated directly via e-mail and
IRC with the appropriate module maintainer.

The big problem with the above development approaches is that, to
this date, free and open source development models have not managed to
consistently scale up production levels to match top quality traditional
closed-source software in many important niches. Examples include
producing professional-grade multimedia applications through the current
free software development model such as nonlinear video editors, complex
videogames, high throughput real-time video applications, interactive
music synthesizers, and scientific visualizers (Matlab, Mathematica and
Maple). The simple and direct ways in which the proposed methodology
improves upon the aforementioned previous approaches to promote
funding and productivity is discussed in section 4. When properly
employed in conjunction with existing approaches, the mechanisms
underlying AA can help create more viable business models for large-scale
free software production, attracting the key parties of sponsors and
contributors to projects (SANTOS AND NELSON, 2010; SANTOS et al.,
2013). This is confirmed by our experiments.

3 THE AA METHODOLOGY

Some of the strategies for GSD mentioned in the previous section are
based on complex methodologies, many of which were created for a
specific company or software center. This section describes an alternative
methodology based on a simple and generally applicable idea: short
sessions of focused work periodically logged by a computational tool.
Figure 1 summarizes the methodology. It is important to stress that AA is
an adaptable methodology that needs to be judiciously customized in
practice, at the service of bottom-line team productivity.

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 7
doi:10.5329/RESI.2014.1302002

Figure 1: A mind map of the AA methodology: i. developer engagement cycle – the usage
of AA; ii. functionality – the design goals of the system; iii. potentialities – end benefits of

AA to team context.
Source: the authors.

3.1 THE AA SESSION

“Central to our feelings of awareness is the sensation of the progression of time.”

– Sir Roger Penrose

From the developers’ perspective, the AA methodology is based on
publishing high level individual reports of what they are doing on a specific
period of time, quantized into short timeslots and aggregated at various
levels. Production status during a timeslot is sampled through so-called
micrologs or AA shouts. The timeframe between micrologs, the timeslot
size, can range between 5 to 15 minutes in our proposed practice – this
can be adjusted depending on what is most convenient for each developer
and the team. An AA session is a larger unit of focused continuous work,
lasting about 2 hours in our proposed regime, quantized into timeslots.
During this time, each developer issues a collection of AA shouts on
whatever she wishes to share, normally once per timeslot. Developers
have the option to set reminders or AA alerts to show up when it is time to
microlog.

The objective of the discretized timeframe and flexible alert scheme is
to minimize developer overhead during his AA session and to reduce noise
in the published information. The developer can issue meaningful
micrologs while staying maximally focused on his code. Each microlog is
usually sent directly to an on-line AA server, or stored locally in a
temporary database for sending/pushing later on. This enables offline
micrologging and periodic alerting.

Each developer optionally records a brief video screencast at the end
of her session summarizing what has been done, explaining her goals and
challenges in her own words and showcasing her most important results.

8 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

This is similar to the video logging system in the film Avatar, although it is
clear, from our July 2011 Git repositories and online wiki, that we have
used this powerful concept in AA independently of its appearance in mass
media. Furthermore, screencasting typically captures actual workflow on
the computer screen, going beyond videologging in the context of
software engineering. When combined with the textual log of the AA
session, screencasting renders the final report more understandable by
the individual developer himself (increasing self-awareness) and to other
people interested in his production (increasing social awareness).

3.2 THE AA WEBSITE REPORT

“Nothing is more important than to see the sources of invention which are,
in my opinion, more interesting than the inventions themselves.”

– Gottfried Leibniz

All AA reports generated by the development team are continuously
sent to a web server and are publicly aggregated on a dashboard website
called pAAnel (Figure 2). It is then possible for managers or fellow
developers to easily follow the work of any given developer, nearly real-
time, reading the small reports or micrologs of what she is working on and
how.

It is moreover possible to lookup older sessions to check when certain
tasks were carried out, or analyze the comments of the developer about
her creative process in tackling a hard problem. Since each AA microlog
happens in a short timeslot, the information about what was done –
especially how it was done – becomes easy to understand, as opposed to a
less dynamic report at the end of a session. This is incidentally exploiting
the concept of time journals – which also happen to be naturally split up
into 15 minute timeslots (BLISS, 1987) – and certain time-management
techniques (GOBBO AND VACCARI, 2008) on a social level.

In the current version of the AA server infrastructure, the aggregating
website allows the developer to attach a link to her screencast for each
worked session. Aggregating screencasts is especially useful when
microloging was deliberately rushed, e.g., the developer had to focus on
something critical at that moment.

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 9
doi:10.5329/RESI.2014.1302002

Figure 2: The AA Report Aggregator V. 0.1 front page displaying the latest AA
messages of users hybrid, filter0, v1z and aut0mata on distributed activities for

a range of globally collaborating entities (LabMacambira.sf.net, IPRJ/UERJ,
IFT/UNESP, IFSC/USP, OPW/Mozilla, Pula Pirata Comics, Inc.). Each message is an

AA shout which, when grouped, constitutes an AA session.
Source: the authors.

3.3 PEER VALIDATION

No set bosses or leaders are required in an ideal application of the AA
methodology. In practice, the need for centralized administrative overhead
is greatly reduced and made flexible due to the self-regulating
mechanisms of the approach. Hence the name 'Algorithmic Auto
regulation' and other implicit interpretations of the AA acronym and logo.

The primary mechanism to achieve decentralization in AA is peer-to-
peer coordination by harnessing social behavior. It can be deliberate or
implicit. In order to prevent spamming and to improve the overall quality
of AA reports, each AA session must be validated by another developer.
More specifically, all reports are read by someone that will mark them
collectively as ‘valid’ or ‘invalid’ and may optionally write comments about
the specific session and quality of micrologs. The developer in charge of
validating any given session is randomly assigned by the AA web server,
which sends out an e-mail to the developer with an URL to a validation
interface.

Peer validation also helps in making decentralized collaboration more
cohesive by encouraging members to be minimally aware of peer
activities, even when these are not immediately useful for accomplishing
the task at hand. We have observed that decentralized teamwork can get
so efficient at actual production that the team gets short-sighted in terms
of coordination: non-communicating subteams can get formed if care is
not taken, causing a fragmentation of the collective. Peer validation is one

10 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

way to help avoid fragmentation and is an essential mechanism of
decentralized team auto regulation.

4 RESULTS AND DISCUSSION

Easy and effective GSD team management is the main purpose of the
AA methodology. To verify its success, the proposed methodology was
employed by the Lab Macambira free software development collective to
auto-regulate a group of nine developers in July-December 2011, three of
which are coauthors of the present work. The goals of the team was to
work on an array of strategic free software projects in audiovisual and Web
technology, contributing directly to official development, submitting bug
patches or committing new features to source code2. Of particular interest
are the strategies adopted to tailor AA to a real context, which are useful
as general guidelines.

The team members had different levels of experience on software
engineering for large and distributed free software projects like Scilab and
Mozilla. To level the field, one month of training was conducted by three
experienced developers (the first authors of the present work), starting by
teaching infrastructure tools like bug trackers, required programming
languages, version control systems, and build systems. After this initial
period, a starter project was proposed for new developers: to submit a bug
fix or implement a new feature for a large free software project and have
an accepted patch or commit to the official repository by the end of July.

Developers passing the starter project would be deemed ‘initiated’
and called a ‘Macambira’ developer, and were hired for paid work using
the AA methodology for the remainder of the semester. To illustrate the
breadth of the resulting contributions, Table 1 summarizes the effective
accepted commits of each successfully initiated developer to free software
projects in 2011, which used the AA methodology. The first column lists
applications to which contributions were officially accepted and whose
development process was tracked and publicly documented using AA. The
second column shows the pseudonym of the committers (at Lab
Macambira it is common practice to employ pseudonyms in AA in order to
enhance privacy).

In one month, each developer officially contributed to one or many
free software projects. Many developers started the initiation training with
no knowledge of what free software was and ended that period becoming
a free software developer. During that month, the same team of trainees
also developed the first version of the AA system and used AA auto-
regulate in their activities, even while developing other aforementioned
free software projects. Thus, AA and the associated software system was
tested, prototyped, and developed in close contact with actual practice.
The source code of AA — both the clients that send micrologs and the AA

2 LabMacambira.sf.net: http://labmacambira.sourceforge.net.

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 11
doi:10.5329/RESI.2014.1302002

Web server — is publicly available as free software3. Moreover, the entire
AA log data of the Lab Macambira team from 2011 to the present time is
also available on-line, which, together with public Git logs from each
project, documents the claims in Table 1 and enables further analysis of
the corresponding data.

Table 1: Free and open software projects that received documented contributions from
successfully initiated developers or ‘Macambiras’ using the AA methodology.

Application Commiters

Mozilla Firefox daneoshiga, bzum

Evince hick209, bzum, marcicano, mquasar

BePDF / Xpdf marcicano

Ekiga flecha

Empathy fefo

Lib Folks (Telepathy) kamiarc

Scilab v1z, humannoise

VxL v1z

ImageMagick v1z

OpenOffice hick209

Puredata v1z, automata, greenkobold, gilson,
bzum

Puredata OpenCV v1z

Puredata GEM v1z, fefo, hick209

Puredata PDP v1z, fefo, hick209

ChucK rfabbri, automata

ChucK MiniAudicle rfabbri, automata

Mozilla Firefox WebRTC automata

OSC-Web automata

Live-Processing automata

Chuck-Wiimote automata

Audiolet automata

Extempore automata

Source: the authors

After the initial training period of one month, the initiated ‘Macambiras’
worked during 6 additional months on a large range of free software
projects, divided into work groups — each work group focusing on a
specific theme like video, audio and web. Funding sources were mainly
contracts, freelance, and the direct support of the Pontão Nós Digitais
NGO. The team also created a range of completely new free software
applications, as listed in Table 24. It is interesting to note the heterogeneity
of projects and their areas of application.

3 AA client and server source code available at: http://wiki.nosdigitais.teia. org.br/AA; AA

logs: www.pulapirata.com/skills/aa
4 http://wiki.nosdigitais.teia.org.br/LabMacambira.

12 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

Table 2: Software projects created by Lab Macambira since July 2011 using the AA
methodology, together with a short description and the technologies involved.

Application Description Technologies

AA Algorithmic Auto regulation Python, PHP

Ágora
Communs

System for online deliberations PHP

SIP Scilab Image Processing toolbox C, Scilab

Animal An Imaging Library C

TeDi Test Framework for Distance Transform Algorithms C, Shell, Scilab

Macambot Multi-use IRC Bot Python

Conferência
permanente

Platform for the permanent conference of the rights
of minors

PHP, JavaScript

CPC Center for the Brazilian culture representation groups Python, Django

Timeline Interactive timelines on the Web JavaScript

Imagemap Interactive labeling of on-line photos JavaScript

ABT Program for real-time sound execution and musical
rhythmic analysis

Python

EKP Emotional Kernel Panic Python, ChucK

SOS Aggregation and diffusion of popular and native
knowledge about health

Python, Django

Creative
Economy

Platform for creative collaborative solidary economy
of culture hubs and entities

Python, Django

OpenID
Integration

Adaptations to existing software for unified login
through OpenID

PHP

pAAnel Dashboard for the real-time visualization of Lab
Macambira activity

Python, Django

Georef Collection of scripts to be used as reference and a
GIS platform to map public data of interest to
citizens

Python, Django

AirHackTable Software system to generate sound by real-time 3D
tracking of flying objects

Puredata, C++,
Scilab

Source: the authors

While using the AA system, developers learned to work asynchronously
with others and got used to the habit of periodically updating their status
on their projects. Each programmer was given the chance to work with
considerable freedom, in any place and time of preference. The strictest
required responsibility was that of using AA for at least one 2h session per
day, while working on the agreed tasks. The online pAAnel allowed each
developer to quickly grasp activities of interest from others while avoiding
interrupting them, a process further aided by the screencasts.

Adjustments to the task deadlines and milestones (which were managed
in Trac and, more recently, on Github) were performed based on observed
progress of individuals and of the labMacambira.sf.net team as a whole.
The numerous inexperienced newcomers benefited from a friendly

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 13
doi:10.5329/RESI.2014.1302002

environment suitable for fast learning by the use of AA as a flexible and
simple transparency system. This was key for the motivation and fixation
of new contributors, which is a central issue in free software development
(SANTOS et al., 2013). Updates from the team were transmitted not on a
person-to-person basis, but rather on a person-to-team basis through the
available online progress information.

As of the time of this writing, Lab Macambira comprises over fifteen
software developers, with the logs registering over eight man-years of
work using AA. Similar team statistics from AA logs are continuously
updated and displayed in graphical widgets as part of a customized
version of the pAAnel dashboard (Figure 3). Key developers among those
trained in 2011 continue to work in the collective as volunteers and
contracted developers with foundations like Mozilla.

Figure 3: Visualizations of team dynamics from AA logs. Left: a bubble word
cloud of latest messages reflecting emerging concepts; Right: bipartite graph
linking developers (light blue) to frequently used terms (dark blue), reflecting

the formation of communities. In the AA instance of Lab Macambira, these
graphs are interactive and continuously updated from a window of 125 shouts.

Source: the authors

5 CONCLUSIONS

In a scenario where Global Software Development is growing across
the entire software industry, there is an increasing need for methodologies
to deal with its potential disadvantages while amplifying its powerful
advantages.

This paper has presented the highly scalable AA methodology, designed
to connect a series of large or small groups of software developers working
from different countries or in the same room. The methodology is built
around a simple system where each developer takes note of his work by
posting a periodic log of short text sentences or micrologs. The sum of
those activity logs, along with an entire session of work, results in a
complete unit of report. The report is made publicly available through a

14 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

Website and is validated by peers that are randomly selected by the AA
Web server. Real-world data on practical experience with this approach has
been collected and reported, involving a team of paid free software
developers, Lab Macambira, which since 2011 has developed new free and
open source software for a vast number of high-end applications using AA.

AA is not limited to a work-management tool, but acts as a self-
regulation methodology to improve the temporal sensitivity and sensibility
of individuals, helping divide complex tasks in time into small chunks or
sessions, and also reducing the need for extensive reports or unnecessary
meetings. By asking users to publish minimal text sentences as a
continuous log feed, the methodology avoids disturbing the flow of
developers which are heavily concentrated in programming. These
developers just have to type a few task-related words and go back to
coding; others get updated as needed for their task. Interruption-free
communication is achieved – AA interruptions are in context, decentralized
and maximally useful.

The AA methodology is not restricted to software development. As of
this writing there is an entertainment studio, Pula Pirata that has been
using AA to manage their creative activities5. Other people with no
software background, like social scientists, musicians and activists also
have been using AA, contributing to its broader improvement6.

There are many aspects of this work to be further explored. Additional
ubiquitous client interfaces for micrologging from different existing tools
beyond IRC and Twitter, e.g., other web social services and e-mail, would
greatly make the use of AA easier and more widespread, turning it into a
truly replicable system. Another research direction is to analyze the actual
work logs generated by the Lab Macambira and Pula Pirata collectives
since 2011 to recognize behavioral patterns in individuals and their
creative process. It would also be desirable to carry out more specific
experiments by harnessing recent research on the psychology of time
responses (CAETANO et al., 2012; GUILHARDI, et al. 2010). This would
enable the scientific testing of the claims made in this paper to refine the
methodology, its mechanisms and parameters.

6 ACKNOWLEDGMENTS

Authors acknowledge the financial support from Pontão Nós Digitais,
and Ricardo Fabbri acknowledges support from FAPERJ/Brazil 111.852/2012.
Authors also thank AA: the present research project and even this
manuscript were written using AA. The complete log for this paper is on-
line at www.pulapirata.com/skills/aa. Finally, authors are also grateful to
IFSC/USP, IPRJ/UERJ, IFT/UNESP and all AA users and collaborators,

5 http://www.pulapirata.com.
6 A small representative sample of our public logs reveals the pseudonyms of activists

(flecha, humanoise, angelina), social scientists (humanoise), musicians (audiohack,
glerm, cravelho), and architects (prestoppc), who have started to use AA due to
convergences with digital media technology at Lab Macambira.

 Revista Eletrônica de Sistemas de Informação, v. 12, n. 3, May-Aug 2014, paper 2 15
doi:10.5329/RESI.2014.1302002

especially those who coded AA hacks for logging through shell and bots,
and those who coded the different Web interfaces in use.

REFERENCES

BATTIN, R.; CROCKER, R.; KREIDLER, J.; SUBRAMANIAN, K. Leveraging
resources in global software development. Software, IEEE, v. 18, n. 2,
p. 70–77, 2001. http://dx.doi.org/10.1109/52.914750

BEGEL, A.; NAGAPPAN, N. Global software development: who does it?
International Conference on Global Software Engineering, IEEE, p. 195-199,
2008.

BLISS, E. Getting things done. CareerTrack Publications, 1987.

CAETANO, M. S.; GUILHARDI, P.; CHURCH, R. Stimulus control in multiple
temporal discriminations, Learning & Behavior, n. 40, p. 520–529, 2012.
http://dx.doi.org/10.3758/s13420-012-0071-9

CARMEL, E. Global software teams: collaborating across borders and time
zones. Upper Saddle River, NJ: Prentice Hall PTR, 1999.

CARMEL, E.; AGARWAL, R. Tactical approaches for alleviating distance in
global software development. Software, IEEE, v. 18, n. 2, p. 22–29, 2001.
http://dx.doi.org/10.1109/52.914734

FRYER, K, GOTHE, M. Global software development and delivery: Trends
and challenges, IBM DeveloperWorks, 2008.

GERMAN, D. M. The Gnome project: a case study of open source, global
software development. Software Process: Improvement and Practice, v. 8,
n. 4 , p. 201–215, 2003. http://dx.doi.org/10.1002/spip.189

GOBBO, F.;VACCARI, M. The pomodoro technique for sustainable pace in
extreme programming teams. Agile Processes in Software Engineering and
Extreme Programming, 180–184, 2008.

GUILHARDI, P.; MENEZA, M.; CAETANO, M. S.; CHURCHA, R. The effect of
stimulus discriminability on strategies for learning multiple temporal
discriminations. Behavioural Processes, n. 84, p. 476–483, 2010.
http://dx.doi.org/10.1016/j.beproc.2010.01.004

KOMI-SIRVIO, S.; TIHINEN, M. Lessons learned by participants of distributed
software development. Knowledge and Process Management, n. 12, p.
108–122, 2005. http://dx.doi.org/10.1002/kpm.225

LAST, M. Understanding the group development process in global software
teams. Frontiers in Education, v. 3, p. S1F–20, 2003.

REIS, C. R.; FORTES, R. P. De Mattos. Caracterização de um processo de
software para projetos de software livre. Msc. thesis, University of São
Paulo, Brazil, 2003.

SANTOS Jr, C.; NELSON, K. Motivation to create free and open source
projects and how decisions impact success. Revista Eletrônica de Sistemas
de Informação, v. 9, n. 2, 2010.

16 Revista Eletrônica de Sistemas de Informação, v. 13, n. 2, May-Aug 2014, paper 2
 doi:10.5329/RESI.2014.1302002

SANTOS, C.; KUK, G.; KON, F.; PEARSON, The attraction of contributors in
free and open source software projects, Journal of Strategic Information
Systems, v. 22, n. 1, p. 26–45, 2013.
http://dx.doi.org/10.1016/j.jsis.2012.07.004

THOMPSON, C. Solo performance: shut up and start acting like an
introvert. Wired, April 2012.

WEST, J.; O'MAHONY, S. The role of participation architecture in growing
sponsored open source communities, Industry & Innovation, v. 15, n. 2,
2008. http://dx.doi.org/10.1080/13662710801970142

