
RESI-Revista Eletrônica de Sistemas de Informação Edição 8, Nº2 2006 1

 Fuzzy Firewalls
Hime Aguiar e Oliveira Junior, Maria Augusta Soares Machado

IBMEC - Av. Rio Branco no. 108 - 9o andar – Centro –
Rio de Janeiro – RJ – BRASIL CEP 20040

hime@engineer.com, mmachado@ibmecrj.br

Abstract
This paper presents a fuzzy control approach for improving present firewall architectures. Taking into account not
only network packets contents and connection status information to take filtering decisions, it’s possible to make
firewall behavior adaptive and to use it to increase operating systems’ immunity to attacks .
Keywords: Fuzzy Logic, Network Security, Fuzzy Control, Firewalls.

 1. Introduction
 Network and computer security is a main concern in present
days, and the most common means of trying to get it is
through the use of the so-called firewalls [18]. A typical
firewall has basically two types of mechanisms to achieve its
aim :
- Static packet filtering [13].
- Tracking of connection states based on protocol

specifications
 In addition, “crisp” (the term “crisp” is used as the

oposite of “fuzzy” [17]) rules are defined and used to “tell”
the firewall what is allowed to pass or not through the
network interface. This way, we can block all incoming echo-
request ICMP packets of a given set of hosts and admit GET
SNMP packets of another one. Note that, in this scheme, the
rules force the firewall to behave in a static (all or nothing)
manner, not leaving room for adaptive dynamics, based on
parameters collected from the network traffic. A very known
kind of network threat is the “denial of service” attack, that
consists of bombarding network servers with enormous
amounts of well-formed requests, driving them to their knees.
That could occur using several protocols like ICMP (echo-
request), UDP (SNMP GET request), TCP (SMTP
transactions), etc.. The key idea is that there is a certain
threshold after which the computational resources will be
exhausted and weird things could happen because,
unfortunately, most operating systems have bugs and are not
prepared to degrade gracefully. Even in a bug-free operating
system, response time would be so large that such a situation
is unacceptable. On the other side, connection state tracking
is effective in several situations, but a skilled hacker could
very well to trigger a great number of “well-behaved”
sessions and be allowed to cause serious damages.

 Another issue to be addressed is that the quality of
security in a given site is dependent of network
administration staff’s skills relative to internals
protocols: in other words, if people in charge of setting
up the firewalls forget something, we can have bad
surprises. But, what to do to ensure maximum usability,
keeping the site at good levels of security ?

 The answer seems to be in the use of Soft
Computing techniques (in particular, Fuzzy Logic [1,4])
a particular caso being qualitative modeling [2]) to build
a model of an “intelligent” and adaptive firewall that
changes its behavior depending on the dynamical
conditions of networks and computational resources.

Fig.1 Functions for MEDIUM, LOW BUT NOT
SO MUCH and HIGH BUT NOT SO MUCH

RESI-Revista Eletrônica de Sistemas de Informação Edição 8, Nº2 2006 2

For the sake of simplicity, we’ll focus the
discussion on the protection against denial of service
attacks, examining two simple and well-known
situations : ping flooding and SMTP/POP server
resource starvation. Our purpose is to show how fuzzy
logic control can be applied to solve the problems
above, in particular, those related to resource
starvation..

2. Echo-request flooding
To cope with this, we propose to build tables,
containing statistical, real-time information about
ICMP-related traffic.In addition, the user could be
allowed to set up the maximum level of ICMP echo-
request packet acceptance (in packets per second, for
instance).

 After that, we are ready to build the following
fuzzy rule-base and terms:

• IF <ICMP echo-request rate> IS LOW THEN
<ICMP echo-request acceptance> IS HIGH.

• IF <ICMP echo-request rate> IS MEDIUM
THEN <ICMP echo-request acceptance> IS
MEDIUM.

• IF <ICMP echo-request rate> IS HIGH THEN
<ICMP echo-request acceptance> IS LOW.

- - - - - - - - - - - - - - - - - - - -
etc.
- -

where the fuzzy input terms LOW, MEDIUM and
HIGH are given by and the output fuzzy terms LOW,
MEDIUM and HIGH are represented in the Figure 1.

Figure 2 Functions representig the fuzzy concepts
LOW, MEDIUM and HIGH.

 With the usual t-norm, t-conorm, fuzzy inference
and COG (Center Of Gravity) defuzzification, we have

a (very simplified) Mamdani fuzzy system [3,8,10] that
implements the desired control scheme.

 Obviously we could have chosen a TSK (Takagi-
Sugeno-Kang) system [19], replacing the consequent
parts by adequate expressions and simplifying even
more (in my viewpoint) the actual implementation.

 To verify that the fuzzy controller really does its
job, we’ll make a little calculation showing its output
for some representative values of the input.

 Suppose that the user adjusted the maximum
allowed echo-request input rate at 100 pps (packets per
second). If, at a given sampling interval, the actual rate
is lesser than 25 pps, the acceptance rate will be 100 %,
resulting in the standard behavior (all packets will pass).
If, during another period, the incoming rate is 50 pps,
the acceptance rate will be 50 % (one packet pass and
the following is rejected, for example). When the
incoming rate is 100 pps or higher, the acceptance rate
will be 0 %, meaning full blocking of incoming ICMP
echo-request packets.

 Such a control law seems sensible, taking into
account that – according to the user’s perception – a
denial of service attack is in progress. Note that
immediately after the end of attack the standard
behavior is restored and “authentic” traffic can flow
again, without human intervention.

3. Resource starvation in SMTP/POP
servers

 The strategy, in this case, is to allow incoming requests
in such a way that the given server can stay responsive
and “healthy”. It is of no value to establish more
sessions than the existent resources could afford. As in
the previous case, we can get an upper limit on the
simultaneous number of e-mail transactions from the
user or to estimate it from operating system and firewall
parameters.

 A (very simple) fuzzy rule-base in this case could
contain the following rules:

- IF <number of present SMTP/POP sessions> IS
LOW AND <data rate of SMTP/POP traffic> IS
LOW THEN ACCEPTANCE IS HIGH.

- IF <number of present SMTP/POP sessions> IS
LOW AND <data rate of SMTP/POP traffic> IS
HIGH THEN ACCEPTANCE IS MEDIUM.

- IF <number of present SMTP/POP sessions> IS
MEDIUM AND <data rate of SMTP/POP traffic>
IS HIGH THEN ACCEPTANCE IS LOW.

- IF <number of present SMTP/POP sessions> IS
HIGH AND <data rate of SMTP/POP traffic> IS
HIGH THEN ACCEPTANCE IS VERY LOW.
.........................
etc.

RESI-Revista Eletrônica de Sistemas de Informação Edição 8, Nº2 2006 3

where linguistic variables and fuzzy terms will be
defined according the users’ needs.

 Obviously, in a real life situation the fuzzy system
will not be so simple and could use different elements.
As complexity rises, we believe that neuro-fuzzy
modeling is the right way to go.

 But anyone could argue : it suffices to build a
crisp decision table to get to the same results !

 We don’t think so and it’s easy to see that viewing
the firewall as a discrete-time control system and the
host as the plant under control, we have all the right
tools to tailor the dynamic characteristics of the closed-
loop system, including stability-related ones.

4. Self-organizing maps and load
monitoring

To help us in the difficult task of critical condition
identification of network resources utilization, we have
employed Kohonen’s self-organizing maps as a pattern
recognition/decision making tool. This was done
because, in certain conditions, isolated parameters
cannot tell by themselves if the overall system is under
true stress or not. So, the fuzzy control approach is
supported by sound global information about network
activity. To clarify this point, suppose that, in the
example about ping flooding, we’d like to improve our
fuzzy rules, substituting them by

- IF <ICMP echo-request rate> is LOW
AND <global system stress> IS LOW THEN

<ICMP echo-request acceptance> IS HIGH.
 - - - - - - -
 - - - - - - - -
 IF <global system stress> IS HIGH THEN

<ICMP echo-request acceptance> IS MEDIUM.
 - - - - - - -
 - - - - - - - -
 - - - - - - - -

where the new input linguistic variable <global system
stress> is obtained from a SOM-based decision maker.
It’s easy to see that such a fuzzy rule-base allows us
take more realistic decisions, taking into account the
overall situation.

 It’s crucial to understand that denial of service
attacks are successful if and only if the target system has
its resources exhausted; if we can predict dangerous
patterns before the worst occurs, it’s possible to take
evasive actions – exactly what the above fuzzy rules
intend to do. In the sequel, we’ll explain how the pattern
recognizer was implemented.

5. Diagnosing load conditions through
SOMs

 The problem was handled by defining
characteristic features of typical networked
environments, like UDP,TCP,ICMP incoming packet
rates (among others) and sampling them for significant
extents of time. From this, a large and representative
sample of approximately 150,000 9-dimensional tuples
was generated and used as an input to one of Kohonen’s
algorithms, giving as a result a grid of codebook vectors
(4,800 cluster centers). Each one of these vectors
represents a given load state, to which we can attach a
load or “global system stress” degree, according to our
perception or to another arbitrary criterion. As the
clustering takes place in a 9-dimensional space and
4,800 centers were synthesized , we have used an
automatic scoring scheme.

 After convergence, the (cluster center, score)
tuples were stored in tables, to be used in run-time by
the fuzzy inference engine. The overall process is very
simple: during its operation, the module gets present
rates of the diverse pre-established features and find the
nearest neighbor among the previously found cluster
centers. After that, the corresponding score is the key to
compute the membership values relative to the input
fuzzy term. The real-time module may be implemented
in several ways: we believe that the better way is to use
internal firewall statistics. Another choice would be to
launch a detached process which, by means of a packet
capture package, would make the recognition task.
Anyway, the run-time overhead is very low, according
to our experience.

6. A fuzzified firewall : the Linux /
Netfilter / Iptables case

 Linux [18] has had firewalling capabilities for a
very long time. in the 2.0 kernels, we had the ipfwadm
package, which did basic fire walling. With 2.2,
ipchains was implemented and offered a significant
number of improvements over 2.0. With the 2.4 kernel,
all of the old fire walling code was ripped out and a new
system implemented. Rather than simply provide fire
walling capabilities, the development team decided to
simply write a system which can take plug-ins, allowing
any fire walling system to be used with Linux. This
subsystem is known as netfilter [11,12], and allows
ipfwadm and ipchains to be used with the 2.4 kernel
series using the ports of each of these to netfilter (that is
about to change in new releases of 2.6 kernel).
However, a far more powerful fire walling system was

RESI-Revista Eletrônica de Sistemas de Informação Edição 8, Nº2 2006 4

implemented, known as iptables [5,6]. Netfilter is the
system compiled into the kernel which provides hooks
into the IP stack which loadable modules (iptables is
one) can use to perform operations on packets. As
netfilter uses modules for the filtering, you can use an
ipchains module to provide exactly the same capabilities
as the kernel level ipchains code in 2.2, or even the
module for ipfwadm from 2.0. Netfilter is there all of
the time, as long as it is compiled in, whether or not you
are using any fire walling modules at all. IPTables is
split into two parts; The user-space tools and the kernel-
space modules. The kernel-space modules are
distributed with the main kernel, and you compile them
as you would any other module, be it sound drivers, a
file system or USB support. There is the main ip_tables
module, as well as modules specifically for NAT,
logging, connection tracking and so on. These modules
perform the appropriate function on the packets which
they get sent by netfilter, depending on the rules which
they have in their rule-list, or chain. The user-space
iptables code comes in the form of a binary called
‘iptables’, which is distributed separately from the main
kernel tree, and is used to add, remove or edit rules for
the modules.

 Iptables has three built-in lists of rules – or chains
– for filtering., so there is INPUT, OUTPUT and
FORWARD chains. INPUT applies to all packets
destined for the local machine, OUTPUT for packets
which originated locally and FORWARD for packets
which are sent to our machine, but are not actually for
it. We can, if we want, create our own chains to
organize our rules into different groups based on other
rules. We create a chain with iptables -N <chain-
name> and delete it with iptables –X <chain-name>.
After this, they behave just like the three default chains,
and we can flush them with iptables -F <chain-name>
or list their rules with iptables -nL <chain-name>.
Using iptables we can perform three actions on the
chains which alter their rules. We can either add, insert
or delete rules, using - A , -I and -D, respectively,
followed by the chain name. So, if we wanted to add
another rule to the end of the INPUT chain we would
use iptables -A INPUT. Not much used, as we need to
specify which packets we want the rule to apply to.

 Matching source and destination IPs and ports is
the most straightforward things to do. If, for example,
we want to block all connections to port 80, over tcp, to
a local machine we would do:

 iptables -A INPUT -p tcp --dport 80 -j DROP
-p sets the IP protocol used, be it TCP, ICMP,

UDP or one of the other more unusual protocols, and --
dport specifies the destination port of the packet. We
can, of course, use --sport to specify a source port, but
that is rarely used as connections normally use a high
source port, unless they are from a specific service,
which has packets coming from a specific port.

Figure 3 Schma of the information flow

 As with every firewall we have notice, the rules
are Aristotelian (they don’t allow a rule to be partially
satisfied), that is, one of two conditions is met : a given
packet flow is totally blocked or totally freed to pass
through the filters. But, in many cases, DoS (Denial of
Service) attacks consist of using perfectly legal services
with enormous packet rates, exhausting server and
communication resources and, frequently, causing
interrupts in normal service.

The question is: How to maintain services
publicly available and to block DoS attacks at the
same time?

 The answer seems to be related to the degree at
which the traffic hits the server infrastructure – if packet
rate is low or moderate, then everything is ok. If traffic
is excessive, we are under DoS attack. So, it is
necessary to design mechanisms that can “understand”
and take evasive actions in adverse conditions and
remove barriers when conditions are favorable.

 To this end, the Netfilter/Iptables system was
endowed with a extension (the fuzzy match) that
allowed the user to translate his own degree perception
into rules, so that the problems above could be solved in
a simple manner. In truth, the original Aristotelian
firewall was fuzzified by the fuzzy kernel module.

The fuzzy match allows you to match packets
according to a dynamic profile implemented by means
of a simple Fuzzy Logic Controller (FLC). It
implements a TSK FLC (Takagi-Sugeno-Kang Fuzzy
Logic Controller) and the basic idea is that the match is
given two parameters that tell it the desired filtering
interval.
• When the packet rate is below `lower-limit', the

rule will never match.
• Between `lower-limit' and `upper-limit', matching

will occur according an increasing (mean) rate.
• Finally, when the packet rate comes to `upper-

limit', (mean) matching rate attains its maximum
value, 100%.
 Taking into account a variable sampling rate of

approximately 100ms (on a busy machine), the module

RESI-Revista Eletrônica de Sistemas de Informação Edição 8, Nº2 2006 5

presents good adaptation to a fast to changing traffic
patterns.

 For example, if you wish to avoid generic Denial
Of Service attacks, you could use the following rule:

iptables -A INPUT -m fuzzy --lower-
limit 100 --upper-limit 1000 -j REJECT

• Below the 100 pps (packets per second) rate, the
filter is inactive.

• Between 100 and 1000 pps the mean acceptance
rate drops from 100% (when we are at 100 pps) to
0% (when we are at 1000 pps).

• Above 1000 pps the acceptance rate keeps constant
at 0%.

Supported options for the fuzzy patch are :
 --upper-limit n
 -> Desired upper bound for traffic rate matching.

 --lower-limit n
 -> Lower bound over which the FLC starts to match.

 For additional details, please see [11].

Conclusions
In our viewpoint, present firewall technology will be
greatly improved by the application of fuzzy logic
control techniques.

 To cope with complexity, neuro-fuzzy techniques
can be employed, allowing us to build large rule-bases
without expert knowledge.

 So, enterprises could benefit largely from the use
of Soft Computing techniques applied to security
devices like the one described above that, at the best of
our knowledge, was the very first operational fuzzy
firewall in existence.

References
 [1].BARRETO, J. M .:Inteligência Artificial no Limiar

do Século XXI. RôRôRô Edições, Florianópolis,
2001.

[2].BARRETO, J M., and M. De NEYER, Qualitative
and Quantitative Models of Systems. In
Mathematical Modelling in Science and Technology,
R. Hanus, P. Kool, S. Tzafestas (edts.), Jorge C.
Baltzer AG, Scientific Pub. Co." p. 269-274, 1991.

[3].BARRETO, J. M., De NEYER, M. & GOREZ, R.,
Fuzzy control of a non linear plant: the case of a
fluid mixer, In P r o c . I E E E / M E L E C O N
Mediterranean Conference, B. Zajc and F. Solina
(edts.), Ljubljana, Slovenia, pp. 807-811, 1991.

[4].BRAGA, M. J. F., BARRETO, J. M. & MACHADO
M. A.: Conjuntos Nebulosos em Análise de Risco,
Artes e Rabiscus, Rio de Janeiro, 1995.

[5].COULSON, D.: Network Security – Iptables, 2003
www.davidcoulson.net/writing/lxf/38/iptables.pdf.

[6].COULSON, D.: Network Security – Iptables, Part 2,
2003
www.davidcoulson.net/writing/lxf/39/iptables.pdf

[7].De NEYER M., R. GOREZ & J. M. BARRETO:
Disturbance Rejection Based on Fuzzy Models. In
Decision Support Systems and Qualitative
Reasoning M. G. Singh e L. Travé-Messuyès (edts.),
North-Holand, Amsterdam, 215-220, 13-15/03/1991.

[8].DRIANKOV, D. & PALM R. (Editors). Advances in
Fuzzy Control. Physica Verlag, 1998.

[9].KAZABOV, N. K.L Foundations of neural
networks, fuzzy systems, and knowlegde engineering,
The MIT Press, Massachussets, 1996.

[10].MAMDANI, E. H., Application of fuzzy algorithms
for control of simple dynamic plant, Proc. IEE,
vol.121, nº12, pp.1585-1588, 1974.

[1 1] . N e t f i l t e r E x t e n s i o n s H O W T O –
(www.netfilter.org/documentation/HOWTO//netfiltr
-extensions-HOWTO.html)

[1 2] . N e t f i l t e r H a c k i n g H O W T O –
(www.netfilter.org/documentation/HOWTO//netfiltr
-hacking-HOWTO.html)

[1 3] . P a c k e t f i l t e r i n g H O W T O –
(www.netfilter.org/documentation/HOWTO//packet-
filtering-HOWTO.html)

[1 4] . N e t w o r k i n g c o n c e p t s H O W T O –
(www.netfilter.org/documentation/HOWTO//networ
king-concepts-HOWTO.html)

[15].TANSCHEIT, R. Controle de Processo por Lógica
Nebulosa. Mestrado em Engenharia Elétrica -
Instituto Militar de Engenharia., 1978.

[16].TANSCHEIT, R; BARRETO, J. M.. Controle de
Misturador de Fluídos na Matemática Nebulosa. In:
II Congresso Brasileiro de Automática,
Florianópolis. 1978.

[17].ZADEH, L .A., Fuzzy Sets, Information and
Control, vol.8, nº1, pp.338-353, Jan 1965.

[18].ZIEGLER, R.:. Linux Firewalls. New Riders, 2002.

[19].ZHAO, J. System Modeling, Identificationand and
Control Using Fuzzy Logic. Doutorado em Ciências
Aplicadas – Université Catholique de Louvain,
1995.

