

Revista hospedada em: http://www.periodicosibepes.org.br
Forma de avaliação: double blind review

Esta revista é (e sempre foi) eletrônica para ajudar a proteger o meio ambiente, mas,
caso deseje imprimir esse artigo, saiba que ele foi editorado com uma fonte mais
ecológica, a Eco Sans, que gasta menos tinta.

This journal is (and has always been) electronic in order to be more environmentally
friendly. Now, it is desktop edited in a single column to be easier to read on the screen.
However, if you wish to print this paper, be aware that it uses Eco Sans, a printing font
that reduces the amount of required ink.

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 1
doi:10.21529/RESI.2016.1502002

PROBLEM-BASED SOFTWARE REQUIREMENTS
SPECIFICATION

ESPECIFICAÇÃO DE REQUISITOS DE SOFTWARE
BASEADA EM PROBLEMAS

(artigo submetido em abril de 2016)

Rafael Gorski M. Souza
Mestre pelo Programa de Pós-graduação em

Computação Aplicada (PPGCA) da
Universidade Tecnológica Federal do Paraná

(UTFPR)
rafael@alunos.utfpr.edu.br

Paulo Cézar Stadzisz
Professor do Programa de Pós-graduação em

Computação Aplicada (PPGCA) da
Universidade Tecnológica Federal do Paraná

(UTFPR)
stadzisz@utfpr.edu.br

ABSTRACT

Requirements specification has long been recognized as a critical activity in software
development processes because of its impact on project risks when poorly performed. A large
amount of studies address theoretical aspects, propositions of techniques, and recommended
practices for Requirements Engineering (RE). To be successful, RE has to ensure that the
specified requirements are complete and correct, what means that all intents of the
stakeholders in a given business context are covered by the requirements and that no
unnecessary requirements are introduced. However accurate capturing business intents of the
stakeholders remains a challenge and it is a major factor of software project failures. This
paper presents a novel approach referred to as “Problem-Based Software Requirements
Specification” aiming at improving the quality of the software requirements specification in the
sense that the stated requirements provide suitable answers to real customers’ business
issues. In this approach, knowledge about the software requirements is constructed from the
knowledge about the customer´s problems. Problem-Based Software Requirements
Specification consists in an organization of activities and outcome objects through a process
that contains five main steps. It aims at supporting the software requirements engineering
team to systematically analyze the business context and specify the software requirements,
taking also into account a first glance and vision of the software. In addition to examples, a
CRM software case study is presented and discussed.

Key-words: requirements engineering; software requirement specification; customer problem.

RESUMO

A especificação de requisitos já é reconhecida há muito tempo como uma atividade crítica
para processos de desenvolvimento de software devido ao seu impacto sobre os riscos de um
projeto quando é mal-feita. Há inúmeros trabalhos que tratam de aspectos teóricos,
proposição te técnicas e recomendação de práticas para a engenharia de requisitos (ER). Para
que se obtenha sucesso, a ER precisa garantir que os requisitos especificados para um projeto
estejam completos e corretos, o que significa que todas as intenções dos stakeholders em um
determinado contexto de negócios sejam cobertas pelos requisitos e que nenhum requisito
desnecessário seja inadvertidamente introduzido. Contudo, a captura precisa das intenções de
negócio dos stakeholders continua desafiadora e representa o principal fator de fracasso de
projetos de desenvolvimento de software. Este artigo apresenta uma nova abordagem
chamada “Especificação de Requisitos de Software Baseada no Problema”, a qual se propõe a
melhorar a qualidade da especificação dos requisitos de software garantindo que os requisitos
estabelecidos representem respostas adequadas a questões de negócios reais dos clientes.
Nessa abordagem, o conhecimento dos requisitos de software é construído a partir do
conhecimento sobre os problemas dos clientes. A Especificação de Requisitos de Software
Baseada no Problema consiste na organização das atividades e objetos resultantes por meio
de um processo composto de cinco passos. Ela se propõe a ajudar a equipe de engenharia de
requisitos de software a analisar sistematicamente o contexto de negócios para especificar os
requisitos de software, também levando em conta uma primeira impressão e visão do
software. Além de proporcionar exemplos dessa abordagem, o artigo apresenta e discute um
caso de estudo envolvendo um software de CRM.

Key-words: requirements engineering; software requirement specification; customer problem.

2 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

1 INTRODUCTION

Software is an important part of modern systems and is employed
widely in almost all economic areas. Countries use software to control
critical resources, including energy, defense, security, and water.
Industries make use of computers and software to model and supervising
their processes. The telecommunications industry often builds new
services based on software. The entertainment industry (e.g., games and
movies) makes intense use of software and can reach millions of users.
Equally, many other areas are also benefiting from new software systems
pushing this market in a continuous growth.

 The growing complexity to produce software to answer the increasing
market demands requires professional approaches to specify and to
construct software systems. Software engineering is the knowledge field to
address this demand as it provides systematic, disciplined, quantifiable
methods and tools for the development, operation, and maintenance of
software (BOURQUE AND FAIRLEY, 2014). Software engineering helps
developers to apply scientific and technological knowledge to encompass
all aspects of the software production. The Guide of Software Engineering
Body of Knowledge (SWEBOK) from the Institute of Electrical and
Electronics Engineers (IEEE) provides a consistent view of software
engineering and it is an important guide to consider in any phase of the
software life cycle (BOURQUE AND FAIRLEY, 2014).

 Requirements Engineering (RE) is the first knowledge area within the
SWEBOK. It initiates the software life cycle and defines software intents
and constraints. RE explores sources (e.g., stakeholders, documents,
regulations) and applies elicitation techniques, analysis, and
documentation. There are numerous sources for software requirements
that may include business goals, domain knowledge, stakeholder’s
viewpoints, business processes, and environmental aspects. A software
analyst needs to ensure that the most important business issues, from
different sources, are addressed. The elicitation activity allows the
software analyst to understand the problem the software is required to
solve. There is a range of elicitation techniques that vary from traditional
interviews for requirements gathering to observation or scenario/user
story approaches. Independently of the used elicitation approach, an
analysis is needed to ensure the consistency of the information. The
requirement documentation (often referred to as Software Requirements
Specification Document - SRS) plays an important role establishing the
basis for the agreement between the parties on what the software is
intended to do and what if is not expected to do (BOURQUE AND FAIRLEY,
2014).

 Software requirements engineering is a recognized critical area in
software engineering because of its impact on project risks when poorly
performed. Very often, there is a gap between the software delivered and
what was expected by the stakeholders. “Accurately capturing system

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 3
doi:10.21529/RESI.2016.1502002

requirements is the major factor in the failure of 90% of large software
projects” (DAVIS et al., 2006).

 A significant part of the difficulties for software requirements
specification is due to the intricacy to write precise sentences that specify
the requirements ensuring the characteristics of a good SRS (IEEE, 1998;
ISO, 2011). However, the main difficulties to specify software
requirements come from a much more complex matter. The requirements
have to accurately capture the business intents of the stakeholders. This
way, software analysts should understand concepts, dependencies,
business goals, and processes from the stakeholders’ domain in order to
be able to write suitable requirements. This understanding is often not
easy to reach because of the existing distance between the technical
domain where software is specified and the business or customer domain
where problems arise (BOURQUE AND FAIRLEY, 2014).

 Davey and Parker (2015) summarize the requirements elicitation
problems in nine categories. One of them is “Clients will sometimes ask for
requirements that the organization does not need”. This category of
problem clearly represents a misunderstanding about the dependency of
requirements on the real needs of the customer. Another problem
category is “The client cannot say what the business needs”. Similarly, this
category of problem represents a misunderstanding about the dependency
of needs on the customer´s problems. Lack of success in recognizing the
Customer Problems (CPs) and Customer Needs (CNs) as different elements
in software requirements’ specification suggests an opportunity of
extension in the current studies on the subject. This paper proposes a
method for software requirements’ specification referred to as Problem-
Based SRS. This method emphasizes the dependency of the requirements
specification on customer needs and also the dependency of these needs
on customer problems. In addition, this paper presents a novel definition
of customer problems and customer needs to address the business
aspects that motivate the development of a software solution.

 This paper is organized as follows. Section 2 briefly presents related
works including RE approaches and business aspects of requirements
specification. Section 3 presents key concepts and processes of the
Problem-Based SRS approach. Section 4 demonstrates a case study
applying the proposed approach. Finally, Section 5 discusses the results
and Section 6 presents the conclusions and future work possibilities.

2 RELATED WORK

Requirements specification has long been recognized as critical
activity in software development processes. A large amount of studies
address theoretical aspects and propositions of techniques and
recommended practices for RE (DANEVA et al., 2014). Studies like that
conducted by Hofmann and Lehner (2001) identified RE practices that
clearly contribute to software project success and concluded that
successful projects allocate a significantly higher amount of resources to

4 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

RE. However, most studies have focused on requirements elicitation,
modeling, and processes/methods (VALASKI et al., 2014).

 A number of studies reported in the literature focus on the elicitation
of software requirements. According to Zowghi and Coulin (2005), this
activity is the process of seeking, uncovering, acquiring, and elaborating
requirements for software systems. It concerns learning and
understanding the needs of customer with the aim to communicate these
needs to software developers (ZOWGUI AND COULIN, 2005). Requirements
elicitation remains essentially a human-centered activity in which effective
communication among the various stakeholders is a primary principle
(BOURQUE AND FAIRLEY, 2014). Additionally, according to Davey and
Parker (2015), there is a general agreement that fixing the results of poor
requirements elicitation is more expensive than fixing other mistakes.

 It is common sense in most studies that software requirements have
to satisfy the customer´s (i.e., stakeholders) intents. IEEE 24765 standard
uses the expression “in a way that is [the requirement] acceptable to the
customer” (ISO, 2010) to emphasize that the requirements must achieve
the customer´s intentions. Thus, some authors propose validating
specified requirements by determining their conformity with stakeholders´
needs (HOFMANN AND LEHNER, 2001). The term “need” is often employed
to refer to the cause or reason that justifies the specified software
requirements (ZOWGUI AND COULIN, 2005). The needs would be the
sources of the requirements. Moreover, some authors observe that the
stakeholders’ needs placed on a software product contribute to the
solution of some real-world problem (BOURQUE AND FAIRLEY, 2014).
Indeed, a software solution developed according to a set of specified
requirements should solve the related customer´s problems (LEFFINGWELL
AND WIDRIG, 2003).

 Among the requirement specification techniques, the agent- or goal-
oriented approaches (e.g., GORE - Goal Oriented Requirement
Engineering) have been used in software engineering to model early
requirements and non-functional requirements (GIORGINI et al., 2002) by
means of goals. Goals are prescriptive statements of intent to be satisfied
by a software system. Goal analysis involves decomposing goals into sub-
goals by means of an AND- or OR-structure (VAN LAMSWEERDE, 2004).
Common methods of GORE are KAOS, I*, and NFR (YU et al., 2011). The
KAOS (Knowledge Acquisition in Automated Specification or Keep All
Objects Satisfied) method is the richest in formal analysis techniques and
enables the system analyst to build the goal models for further derivation
of the SRS. In a KAOS model, the stakeholder’s needs represent the goals,
responsibilities, objects, and operations of the intended software system
(DARDENNE et al., 1993).

With respect to the understanding of real-world problems, the
Problem Frames (PF) approach presents a new view that relates problems,
specification, and software requirements. The “problem” in PF is defined
as a software related problem viewed as a requirement in a real-world

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 5
doi:10.21529/RESI.2016.1502002

context which a software can help to solve. PF has the purpose of meeting
a recognized need (i.e., requirement) by transforming the physical world.
The part of the world to be transformed, in which requirements are
located, is called the problem world. The problem-progression is the main
activity in PF and it creates the specifications based on requirements
(JACKSON, 1999). Problem frames can be regarded as defining problem
classes in software engineering (JACKSON, 2005).

 In the field of business analysis, the Guide to the Business Analysis
Body of Knowledge (BABOK) refers to problems and needs using the follow
terms: (i) Problem statement describes the problems in the current state
and clarify what a successful solution will look like, (ii) Business need is a
statement of a business objective or an impact the solution should have on
its environment. According to IIBA (2009) the process “Define Business
Needs” considers the widest possible range of alternative solutions by
evaluating the encountered problems (IIBA, 2009).

 In the context of system engineering, the deep understanding of
system intents and how they map to technical systems requirements is as
important as for software engineering, and the underlying concepts are
also analogous. The International Council of System Engineering – INCOSE
- employs the terms “Problem or Opportunity” to refer to the issues
underlying the gaps in the organization strategy with respect to the
desired organization goals or objectives (INCOSE, 2015). System
engineering also uses the term “stakeholder needs” to mean the “needs
determined from the communication with external and internal
stakeholders in understanding their expectations, needs, requirements,
values, problems, issues, perceived risks and opportunities”. The term
“stakeholder requirements” refers to “requirements from various
stakeholders that will govern the project including required system
capability functions and/or services; quality standards; systems
constraints; and cost and schedule constraints”. Additionally, the term
“system requirements” means “what the system needs to do, how well
and under what conditions, as required to meet the project and design
constraints” (INCOSE, 2015).

 Specifically, in the corporate area, studies on business modeling
intend to understand and model how businesses function and how a
company creates value. When the business model is transmitted to a
company´s information systems layer, a certain abstraction is required to
accommodate its strategic orientations. A unified view to simplify the
business model and to better map the business values and customers is
important to express the needs of the stakeholders. Osterwalder and
Pigneur (2003) proposed an approach for business modeling referred to as
“e-business model” and presented a more recent version called Value
Proposition Design (VPD) (OSTERWALDER et al., 2014). Similarly, Blank
and Dorf (2012) described the study of customer problems as the
understanding of the problems that impact the organization and the
“intensity of pain” they cause to the customer. In other words, how
customers experience the problems and why the latter matter to the

6 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

former. This information brings compelling arguments to build solutions to
solve problems. Blank and Dorf (2012) suggest that customer problems
should be expressed as “latent, passive, active or vision” depending on
the customer acknowledgement and motivation to solve them. According
to VPD, Osterwalder et al. (2014) divided the customer profile in three
sections: pains, gains, and tasks. Pains are the weak results, risks, and
obstacles related to the customer tasks. Gains are related to the results
expected by the customer and the concrete intended benefits. Tasks detail
the initiatives and work done to achieve the results in daily businesses.

 Despite the large number of studies and approaches proposed to
specify software requirements, it is generally accepted that specifying
requirements remains an unclear and challenging task. Terms used in the
scientific literature and even in the industry (as pointed out in this section)
are not convergent, creating lack of understanding on the subject.
Software analysts may feel confused when trying gathering information
from the stakeholders and other sources in the business or application
domain. Therefore, the specification of software requirements may
become incomplete or incorrect because of an inadequate understanding
of the project intents. However, the related works indicated in this section
(among other contributions) bring fundamental concepts that, in addition
to their contribution, will be useful to elaborate a new proposition referred
here to as Problem-Based SRS, as discussed in the next section.

3 PROPOSAL OF PROBLEM-BASED SRS

This section introduces the Problem-Based SRS approach. It presents
an overview and the key concepts of the approach, followed by a general
view of its activities and produced outcomes. Also, each activity is
depicted describing the goal and format of the related specifications.

3.1 OVERVIEW OF THE PROPOSED APPROACH

The Problem-Based SRS is a novel approach proposed here aiming at
improving the quality of software requirements specification in the sense
that the stated requirements provide suitable answers to real customer´s
business issues. In this approach, knowledge about software requirements
(i.e., requirements specification) is constructed based on the knowledge
about the customer´s problems. However, in this paper, the concept of
customer´s problem has a new definition that extends its usual
understanding. Instead of expressing problems as purposes (INCOSE,
2015), customer’s needs (BOURQUE AND FAIRLEY, 2014) or goals (YU et
al., 2011), authors propose a more accurate technique to understand and
state the customer´s problems. As discussed in section 3.2, problems are
considered as “obligations or expectations” with respect to matters that
may affect the customer´s business.

 Although the concept of problem in the proposed approach is
somehow similar to that in the related works, authors argue that the
concept of problem in the domain of software systems has a subtle

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 7
doi:10.21529/RESI.2016.1502002

meaning, not unveiled previously. Problems are different from “purposes”,
since “purposes” represent objectives or intents, not the original
difficulties that constitute the problems. Similarly, problems are not
“needs”, because “needs” represent the necessities directed to the
software solution and not the problem (i.e., the difficulty) that calls for a
solution. Also, problems are not equivalent to “goals”, as “goals” describe
early software requirements.

 By analyzing the customer´s business context, problems can be
defined and their severity can be specified. According to the perceived
intensity of the problems, the customer becomes motivated to solve all or
a subset of them (BLANK AND DORF, 2012). At this point, authors
understand that the customer envisions possible types of solutions for the
problems. Solutions may be technical, as software systems, or they may
take any other form, as for example, hiring a new employee.

In this paper, the customer´s early view of a software system solution
is referred to as “software glance”. The software glance does not contain
much details about the software. However, it may describe major
characteristics and interfaces perceived by the software analysts
considering a set of identified customer problems. Software glance
represents (in an early stage) the solution that will provide what is needed
to solve the customer problems. Therefore, based on the customer´s
problems, and taking into account the software glance, customer´s needs
for that software could be defined. As stated in the next section,
customer´s needs are defined as the outcomes that a software shall
provide to solve (or help solving) the customer´s problems. Because, the
customer´s needs detail what is expected as an outcome from the
envisioned software solution, they allow the specification of the software
glance to evolve and turn to a more detailed specification, called “software
vision” in this paper. Then, the software vision, together with the
customer´s needs, represent the input for the software requirements
specification. This means that software requirements derive from the
needs that in turn derive from the customer´s problems, as illustrated in
Figure 1.

8 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

Figure 1. Causal dependencies between problems, needs, and requirements.

Source: the authors

3.2 KEY CONCEPTS OF THE PROBLEM-BASED SRS

The four key concepts of Problem-Based SRS are “customer
problems”, “software glance”, “customer needs”, and “software vision”.
Although these are not entirely new concepts, they have particular
meanings in the proposed approach. They are used along with other
common concepts such as “business context” and “software requirements
specification”.

(i) Customer Problems - CPs

According to the dictionary, a “problem” is a question that involves
doubts, uncertainty or difficulty (MCKEAN, 2005). In a math sense, a
problem is a proposition requiring a solution. Similarly, in engineering,
engineers seek for solutions for the problems of a company or society. In
management, problems represent pains or risks with respect to negative
results of carrying out business tasks (OSTERWALDER et al., 2014).
Through this paper, authors consider that a company becomes motivated
to buy or develop a solution when a problem that affects its business is
present. Thus, problems represent the reasons why companies attempt to
find new solutions including software systems.

 Problem is defined herein as a matter that may cause or is causing an
(negative) effect on the company´s businesses. One can perceive
problems by means of indicators, measures, and metrics that show how
healthy a company or business is. Because many problems are not
explicit, one can also perceive problems as (negative) feelings. In the
business domain, these perceptions of problems may take the form of
business risks, business losses, and business improvements, for instance.
In general, problems are considered bad things for a company. However,
in many ways, problems may also arise from the company´s intent to

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 9
doi:10.21529/RESI.2016.1502002

improve its businesses by changing its goals, following news strategies or
adopting innovative technologies, for instance. These are considered
problems because they require efforts (i.e. bring difficulties) to be
achieved (i.e. to be solved).

 In this paper, from the software analyst´s point of view, the problems
of the business stakeholders are referred to as Customer Problems (CPs).

The CPs impact business in different forms, according to the severity
of the problem. To illustrate CPs, consider the business context (i.e., a
given business scope) and further list of perceived CPs, presented in Table
1. CPs represent examples of risks and losses perceived in a business
context in which a company intends to adapt its automobile model. The
underlined verbs in each CP highlight the intensity of the problems to the
company.

Table 1. Example of Customer Problems

Business Context Definition:

The company produces and commercializes an automobile model worldwide. This
automaker intents to adapt its automobile model to the new emission regulations. Such
regulations concern the business because they may cause severe financial penalties and
public image degradation if they are not met by the automobile model. The company
shall construct technical solutions to ensure compliance with emission regulations
without compromising other technical aspects of the automobile.

Customer Problems Definition:

CP.1 - The company´s current automobile model is 80% compliant with the recent
emission regulations. The company must adapt it to fully comply with the recent
emission regulations; otherwise it will suffer financial penalties.

CP.2. The company must deliver the automobile model adapted to the emissions
regulation before the competition, otherwise it will lose an important marketing
opportunity of this innovative upgrade.

CP.3. The company must ensure that the changes in the automobile model comply with
the emissions regulations do not affect other technical aspects of the automobile model.

CP.4. Customers of the company´s automobile model expect that the model is one of
the best in terms of reducing emission. If that does not happen, the attractiveness of the
automobile model will decrease.

CP.5. Customers of the company´s automobile model aim at contributing to reduce the
greenhouse effect and they hope the automobile model will encourage other people to
embrace the same cause, otherwise they will be somehow disappointed.

Source: the authors

(ii) Software Glance - SG

 Once the customer problems are established, the software analyst
elaborates a rough idea of a software to solve or help to solve those
problems. This early idea provides a solution direction in wide terms and
allows to identify the main pieces of the envisaged software. For instance,
the idea might state that “an information system including a database,
interface to collect data from Internet sources, and being operated by a

10 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

professional” could be a rough solution to solve the set of specified
problems. Here authors refer to this “rough idea” as software glance.

 The software glace will be useful for further analysis and synthesis
(e.g., software vision definition and customer´s need specification) of the
software solution. Although the software glace does not provide details
about the software architecture, functionalities, and behavior, it represents
a high level and early definition of the software solution.

(iii) Customer Needs - CNs

 Because, by definition, customer problems cause some kind of
discomfort, pain, possibility of losses, or expectation, the customer (i.e.,
who suffers the problem) is motivated to seek a solution. At this early
stage, the company envisages a solution (a software glance) and starts
defining what is necessary for that solution to solve or to minimize the
perceived problem. These necessities are referred to as Customer Needs
(CNs).

 According to Leffingwell and Widrig (2003), the customer needs (also
referred to as stakeholder needs) are part of the problem domain and are
defined by real users. These real users talk in non-technical terms and
express their needs to solve their problems using statements such as: I
need a new logistics system to optimize my costs and smash the
competition prices. These are simple descriptions, in natural language,
that tell what a software should provide to address the problem.

 It is important to note that customer needs do not describes
functionalities of the software to be developed. Instead, it describes what
the software shall provide to the customer in order to solve his problems.
They are focused on the outcomes of the software, as, for instance, the
information it can provide.

 As an example, let us consider that a manager has to pay invoices
that are due on a given day, otherwise he will have a payment penalty. A
software solution could help to solve this problem by providing information
that warns the manager about the invoices due dates. Consequently, the
customer need according to the stated problem is “the manager needs to
be aware about the invoices due dates by means of information provided
by the software solution”.

 Table 2 presents some examples of customer needs related to the
customer problem CP.4 introduced in Table 1.

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 11
doi:10.21529/RESI.2016.1502002

Table 2. Example of Customer Needs

Customer Needs Definition:

CN.1. The company needs a software system (a web site) to allow its clients to know
about (to be aware of) the emission specifications related to the company´s
automobile model.

CN.2. The company wishes a software system (a web site) to allow its clients to know
(to be aware of) how substantial the emissions related to the company´s automobile
model are with respect to other concurrent products.

CN.3. The company aims a software system (a web site) to allow its clients to know
about (to be convinced of) the opinions of other clients with respect to the emissions
related to the company´s automobile model.

Source: the authors

(iv) Software Vision – SV

 A vision document for a software project is a common document used
to describe a high-level view of the software to be developed. It provides
an overview of the aimed software, its major features, its scope and
limitations, positioning, environments, and involved stakeholders, among
other general information. As an example, the IBM Rational Unified Process
(RUP) describes such information in a vision document (JACOBSON et al.,
1999; IBM, 2015) and presents a template to write this document.
Similarly, other authors proposed to use analogous vision documents as
part of the software requirements engineering process (LEFFINGWELL AND
WIDRIG, 2003; WIEGERS AND BEATTY, 2013).

 The vision document is a technical view of the software that is useful
to support the software requirements specification. It provides boundaries
for the software that helps to keep the requirements inside that software
scope. The vision document is also a more detailed view of the aimed
software outlined in the software glance. It includes some very high-level
decisions with respect to a draft of the software organization and
connections with the environment. Even presenting some aspects of
architecture, this document is not intended to describe the complete
software architecture because the architecture will be developed later in
the software development process during the design phase.

3.3 GENERAL VIEW OF THE PROBLEM-BASED SRS

The proposed Problem-Based SRS approach involves the organization
of activities and outcome objects. It aims at supporting the software
requirements engineering team to systematically analyze the business
context and specify the software requirements. Figure 2 shows an Object-
Process Diagram (OPD) that outlines the Problem-Based SRS. The OPD
notation is defined in the Object-Process Methodology (OPM) (DORI, 2011).

 Problem-Based SRS consists in a process that contains five steps also
referred to as processes or sub-processes, as illustrated in Figure 2. The
first step is the process to specify customer problems based on the

12 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

analysis of the Business Context and producing the list of Customer
Problems as outcome. The second step it the process to design a Software
Glance suitable for the defined customer problems. Next, in the third step,
customer needs are specified according to the Customer Problems and the
Software Glance. Fourth, the software vision is produced enhancing the
software view expressed in the Software Glance and considering the
specified Customer Needs. Finally, step 5 involves the process of
specifying the software requirements based on the Customer Needs and
according to the defined vision of the software system.

Problem-Based SRS approach may be conducted sequentially as well
as following iterative and incremental work flows. Although the OPD in
Figure 2 suggests a sequential flow of processes from the first to last step,
one should consider that these processes do not need to be sequentially
synchronized. This means, for instance, that the second step can start
even if the first step is not entirely concluded. This way Problem-Based
SRS may clearly be employed along with agile approaches.

The following subsections explain the processes that encompass the
Problem-Based SRS. The relationship between the processes and their
inputs and generated outcomes are detailed for each specific process.

Figure 2. Problem-Based SRS Process Diagram.

Source: the authors

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 13
doi:10.21529/RESI.2016.1502002

3.3.1 CUSTOMER PROBLEM SPECIFYING

The Customer Problem Specifying process aims at studying the
business context to infer CPs and to write them in the form of statements.
To determine the CPs, the software analyst may explore the business
context. One can make use of questions such as: What problem is self-
evident in the business context? Can specific problems, involving some
pain or penalty be observed? How does the company notice difficulties?
Are there metrics or indexes pointing out the current difficulties? Are there
envisaged actions to mitigate current difficulties? Are there any felling
from the stakeholders about the difficulties in the business context? What
is the level of pain the company is experiencing? Is there any imminent
risk? (OSTERWALDER et al., 2014).

Authors suggest a new notation to write the CPs statements. Each CP
is written as a sentence in natural language and should include a noun, a
verb, and object, and a penalty. The noun states the subject that suffers or
feels the problem (e.g. the company, a stakeholder, a customer). The verb
indicates the intensity and the form a problem reaches the subject. For
instance, the problem may be an “obligation” indicating it represents a
severe problem to the subject. The problem object describes the difficulty
that is the source of the problem. Finally, the penalty associated to the
problem states the cost, pain, punishment or gain that is a consequence of
the problem object. Problem penalty is optional in the problem sentences
because sometimes it is evident.

With respect to the verb in the definition of a problem, authors
propose three alternative classes as standards to be used in order to write
the CPs, as follows.

• Obligation class

This class indicates that the object of the problem is an obligation to
the subject. This means that the subject must accomplish the object
because a penalty is otherwise imposed. This is the more severe class of
problem as the customer has no choice but doing what is imposed. Verbs
such as “must to”, “have to” or “is obligated to” can be used to express
this class of problems. This obliged may result from the legislation, the
subject´s client, or from legal or regulatory standards, for instance.

• Expectation class

This class indicates that there is an expectation (from the subject´s
clients) to the subject about the object. An expectation is not as severe as
an obligation, however it represents a strong belief that the object could
be accomplished. Consequently, the subject should seriously consider the
penalty because the level of expectation can be significant for a certain
stakeholder (e.g., a subject´s client).

• Hope class

This class indicates that there is hope (from the point of view of the
subject´s client) to the subject about the object. In other words, a hope is

14 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

a prospect or possibility that the subject will accomplish the object. This is
the least severe of the customer problem classes, however it deserves
attention because a hope could influence a certain stakeholder (e.g.,
subject´s client). Table 3 shows the proposed notation and examples of
problem statements.

Table 3. Example of CP Syntax

[Noun] [Verb] [Object] [Penalty]

Example 1:
The Company [Noun] must [Verb] submit a report within ten days of the event [Object]

otherwise a punishment of 10% of the closing balance applies [Penalty].

Example 2:
The Company´s [Noun] client has an expectation [Verb] that the waiting time of a call

center is less than two minutes [Object] otherwise one may make an official complain to
regulatory authorities [Penalty].

Example 3:
The Company [Noun] has a hope [Verb] that a sale order can be canceled even

after confirmation [Object] otherwise the client may feel unhappy [Penalty].

Source: the authors

3.3.2 SOFTWARE GLANCE DESIGNING

The Software Glance Designing is the process through which the
software analyst builds the very first draft of the software solution. The
goal of this activity is to provide an early understanding of the system
border, high-level system architecture, main software interfaces and
software actors. During this activity, the software analyst can use
diagrams as a resource to visually represent the software glance. Figure 3
presents a simple example of a software glance illustrated in the form of a
block diagram. Additionally, the software glance can be documented in the
form of sentences (as illustrated in Table 4) and complementary
explanations.

Figure 3. Example of block diagram describing a software glance

Source: authors

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 15
doi:10.21529/RESI.2016.1502002

Table 4. Example of Software Glance

Software Glance Definition:

The sales information system will support purchasing products by clients using mobile
platforms. The mobile application will provide customers with products information and
provide the sales management software with purchase data. The system operator will
interact with the management software for analyzing the sales progression and possible
feedbacks from clients. All information generated shall be persisted in a local database.
The communication between sales management software and the mobile application will
be over the Internet.

Source: the authors

3.3.3 CUSTOMER NEEDS SPECIFYING

The Customer Needs Specifying process identifies and maps the CNs
to satisfy the CPs using the software glance as to guideline. Each need
statement is the result of direct mapping from a specific problem, that is,
the problem represents the origin of that particular need. The software
glance creates boundaries and gives direction to choose the appropriate
CNs. Each CP creates a demand for CNs to solve or mitigate the problem.

 Authors consider that a software solution can provide basically four
classes of outcomes: information, control, construction and entertainment.
Thus, CNs are expressed using these outcomes, as discussed as follows:

• Information is a common outcome from a large number of software
systems in different forms, as for example: printed reports, data
tables and graphs on screen, alarm sounds, warning messages, and
light signs. In this manner, a CN may state that a customer needs to
know, to be aware, to have knowledge, or to be reminded with
respect of some information.

• Software systems also provide control that means a continuous
supervision of a running logic. For instance, an astronaut needs
control of the pressure inside the spacecraft cabin provided by a
software solution.

• More and more, software systems provide us with means to build
digital things, as for example: texts, models, drafts, images and
videos. Therefore, building or modeling things are software solutions
for a number of CNs.

• Finally, a software system can provide entertainment as its outcome
in the form of music, video and games, for instance.

 Authors suggest a new notation to write the need statements using
natural language and including a noun, a verb, a means, an object, and a
condition. The noun states the subject (e.g. the company, a manager, a
customer) that has the necessity. The verb indicates a necessity from a
problem using verbs such as to want, to intend, to aim, to desire or to
need. The means defines the thing that will provide the object of the need.

16 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

In the context of this study, the means will always be the software system
under design (outlined in the software glance). The object represents the
intent of the need, that is, what the means should provide in terms of
information, control, construction or entertainment. The condition states
constraints on the object of the need, as the period or accuracy of the
object, for instance.

 Table 5 shows the proposed notation and gives some examples of
CNs using this notation.

Table 5. Example of Software Glance

[Noun][Verb][Means][Object][Condition]

Example 1:
The manager [Noun] needs [Verb] a software system [Means] to know the balance of

the client’s accounts [Object] every quarter [Condition].

Example 2:
The human resources director [Noun] wants [Verb] a software application [Means] to

be aware about the employee absenteeism [Object] every month [Condition].

Source: the authors

3.3.4 SOFTWARE VISION DESIGNING

Through the Software Vision Designing process the solution developer
and the stakeholders aim to reach agreement about the high-level scope
and position of the software. The software glance provides the starting
point and the initial draft with initial directives the software. This process
produces the vision document, as discussed in section 3.1, and it involves
common activities (LEFFINGWELL AND WIDRIG, 2003; WIEGERS AND
BEATTY, 2013) as, for instance, defining the positioning of the software
solution, detailing the stakeholders, describing the product overview and
its high level features, and defining the environment and constraints.

3.3.5 SOFTWARE REQUIREMENTS SPECIFYING

The Software Requirements Specifying is the process of clearly
identifying the functional and nonfunctional demands that the software
shall meet. This process is related to a well-known knowledge area
(BOURQUE AND FAIRLEY, 2014) concerned with the elicitation, analysis,
specification, and validation of software requirements. It also includes the
requirements management during the software life cycle.

 The software requirements must meet customer needs and they must
have accurate characteristics as stated in the ISO/IEC/IEEE 29148 (2011).
Particularly, they shall be complete (i.e., all customer needs must be met
by the requirements) and correct (i.e., all requirements must meet some
customer need).

 ISO/IEC/IEEE 29148 (2011) provides a syntax to write software
requirement. Authors adopt that syntax but suggest to write the

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 17
doi:10.21529/RESI.2016.1502002

requirement´s conditions at the end of the sentence in order to always
start the sentences with the subject, as illustrated in Table 6.

Table 6. Requirements Specification Notation

[Subject] [Verb] [Object] [Constraint] [Condition]

Example 1:
The system [Subject] shall set [Verb] the signal x received bit [Object] within 2 seconds

[Constraint], when signal x is received [Condition].

Example 2:
The Radar System [Subject] shall detect [Verb] targets [Object] at ranges out to 100

nautical miles [Constraint] at sea state 1 [Condition].

Example 3:
The Invoice System [Subject] shall display [Verb] pending customer invoices

[Object] in the order invoices are to be paid [Condition].

Source: the authors

4 THE CRM SOFTWARE SYSTEM EXAMPLE

This section presents an example of software requirements
specification using the proposed Problem-Based SRS approach. The
example under consideration refers is a Customer Relationship
Management (CRM) software. The following subsections are organized
according to the activities of the process defined in section 3.2 and briefly
describe how the software analyst can conduct them.

4.1 BUSINESS CONTEXT

Business context is a set of information that characterizes a portion of
a business domain and defines the scope for conducting some action, as
an analysis, change or improvement. A business context can be described
using different modeling approaches like context diagrams, feature trees
(WIEGERS AND BEATTY, 2013), natural language sentences, UML, or
ontology-based models (NOVAKOVIC AND HUEMER, 2014).

For the CRM example, the business context was defined in the form of
a statement in natural language illustrated in Table 7.

Table 7. Business Context – CRM Example

A company has strong difficulties to effectively build relationships with its clients and it
is convinced that an information system such a CRM can contribute to reduce these
difficulties.

Source: the authors

This short business context statement points out that the company is
encountering “strong difficulties”, what indicates that problems may exist
in this business scope and that they are significant to the business. This
discomfort in face of the difficulties leads the company to search for a
software solution to help to reduce these difficulties (i.e., to solve the

18 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

underlying problems). Also, this discomfort relates to issues about the
“relationship with its clients”. Finally, the stakeholders know that CRM is a
suitable type of solution, perhaps because they have saw other companies
using such technology.

4.2 CUSTOMER PROBLEMS

The software analyst starts conducting the process "Customer
Problem Specifying" performing an analysis of the business context to
determine the customer problems related to the CRM software. Using the
business context, the analyst can identify the source of problems that, for
the considered example, is “the difficulties of relationship with its clients”.
Different elicitation techniques can be used in order to determine the
customer problems based on the problem source. Particularly, when
applying the Problem-Based SRS approach, the focus is on analyzing the
company obligations, expectations, hopes, and associated penalties.

 For the considered example, the analyst could for instance, ask the
stakeholders “How does the company currently supports customer
relationships?”, “Are there statistics about the clients’ feedbacks?”, “How
does the company fulfill clients’ expectations?”, “Are there company´s
policies about customer relationship?”, “Are there particular regulations
with respect the customer relationship?”. This kind of questions can help
unfolding the problems associated to the business context. Table 8
presents some examples of CPs for the CRM specification.

Table 8. CPs for CRM software.

CP.1 - The company must ensure the existence of a communication channel with all
clients. Otherwise, loss of contact with customers will occur affecting marketing,
promotions, feedback, and future sales.

CP.2 - The company must consider the statistics about customers’ feedback in the
company planning. Otherwise, provoking customer dissatisfaction and consequent
losses in sales and market-share.

CP.3 - Clients have the expectation that the company addresses theirs feedback.
Otherwise, the customers may become frustrated and the company may suffer a penalty
of decrease of reputation.

CP.4 - The company must align its sales strategies and campaigns with customers’
behavior. Otherwise, the company risks missing sales opportunities or failing with its
strategies.

CP.5 - The company must forecast sales. Otherwise, the company may miss sales
opportunities and make wrong provisions.

Source: the authors

4.3 SOFTWARE GLANCE FOR THE CRM

The software glance for the CRM software must clarify the early view
of the software to face the identified problems (CPs). It is the very first
representation of the software solution. In this example, the business
context clearly suggests a CRM software as an envisaged solution by the

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 19
doi:10.21529/RESI.2016.1502002

stakeholders. However, CRM software does not follow a standard. It may to
be customized in different ways. Because CP.1 pointed out a problem
associated to communication channels with the company´s clients, the
software analyst considered that the software solution could have a web
interface with the clients for marketing, promotions and to receive and
respond to feedbacks (highlighted in CP.3). CP.2 in turn referred to a
problem related to be aware about statistics on the client’s feedback. This
made the analyst consider a local interface with the Manager to provide
those statistics. The analyst also considered that to be able to analyze
customers´ behavior (CP.4) and to be able to forecast sales (CP.5), the
software shall have a database to register the interactions with clients and
their purchases history. In addition to an interface to interact with the
manager, the software could also have a LAN interface with the Sales
Management Software. Based on this reasoning, Table 9 states the
software glance defined for the CRM software example and Figure 4 shows
a block diagram of the software glance.

Table 9. Software Glance definition of the CRM software.

The CRM software will interact with the clients through a web interface allowing
marketing, promotions, receiving feedbacks, and responding to the clients. In addition,
the CRM software will provide local interfaces to interact with the manager. Data about
the clients, feedback, and sales history will be stored in a local database. The CRM
software will also include a LAN interface with the Sales Management Software.

Source: the authors

Figure 4. CRM software glance block diagram

Source: the authors

4.4 CUSTOMER NEEDS WITH RESPECT TO THE CRM

At this point, the software analyst knows the identified CPs and has a
“glance” of the envisaged CRM software. The next step is to determine
what the customer needs are as outcomes from the software solution to

20 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

solve the CPs. In the proposed approach, the needs are expressed as
information, control, entertainment or constructions that the software
solution shall provide.

Considering CP.1, the analyst concluded that the company should
know who its clients are and be aware about their current contact
information. Additionally, the analyst observed that for ensuring a
communication channel with its customers the company should contact
them regularly and be aware of the ongoing company-client relationship.
Then, the analyst specified CN.1, CN.2, and CN.3 as outcomes needed
from the CRM software in order to solve or help to solve CP.1. Table 10
shows the resulting CNs obtained from the analysis of the CPs.

Table 10. Customer needs for the CRM

CN.1 - The company needs a CRM software to identify its clients and keep track of
their contact information are.

CN.2 - The company needs a CRM software to be aware of the clients that have to be
contacted in order to maintain active the communication with them.

CN.3 - The CRM manager wants a CRM software system to be aware of the ongoing
company-client relationships.

CN.4 - The CRM manager needs a CRM software to have knowledge the statistics on
clients' feedback.

CN.5 - The Account manager needs a CRM software to receive and manage feedback
from its clients.

CN.6 - The Account manager wants a CRM software to be aware of the received
feedback to be answered.

CN.7 - The Account manager aims a CRM software to understand the client's behavior.

CN.8 - The Account manager needs a CRM software to forecast sales.

Source: the authors

4.5 SOFTWARE VISION FOR THE CRM

After knowing the customer needs and having a “glance” on the
software solution, the software analyst can produce (i.e., design) the vision
of the CRM software. This software vision details the software glance
taking into account the outcomes of the software (CNs) that are needed by
the customer. For the CRM software example, the analyst decided the
vision document will include the software positioning, involved
stakeholders, high-level software features, and software environment, in
addition to the high-level software architecture diagram. Table 11 shows a
simplified version of the CRM software vision document and Figure 5
presents the CRM software high-level architecture.

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 21
doi:10.21529/RESI.2016.1502002

Table 11. Software vision of the CRM

Positioning: The CRM software is for account and customer relationship managers who
have to maintain close relationship with company clients. The CRM software is an
intuitive platform that ensures continuous communication channels with clients and
helps understanding clients behavior and forecast sales.

Stakeholders: Account manager, CRM manager, and company clients.

High-level features:

• The CRM software shall provide communication channels with clients through the
Internet.

• The CRM software shall provide sales forecasts, analysis of clients behavior, and
statistics on clients feedback.

• The CRM software shall ensure appropriate security standards.

• The CRM software shall be compatible with IT technologies currently employed by
the company.

• The CRM software shall be structured in front-end and back-end subsystems.

Environment: The CRM Managers mainly use mobile devices and high-speed internet
connectivity. Account managers are co-allocated in the company office using standard
corporate computers. As corporate standard, all software solutions require to use cloud-
based infrastructure and web access.

Source: the authors

Figure 5. CRM software vision block diagram

Source: the authors

4.6 SOFTWARE REQUIREMENTS OF CRM

Given the software vision and knowing the customer needs, the
software analyst can define the functional and non-functional
requirements for the CRM software to ensure complete and correct
coverage of the specified customer needs.

22 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

For the CRM example, the analyst specified four requirements to
address the outcome related to CN.1 (i.e., need to identify the company´s
clients and their contact information). These requirements are related to
registering a new client (FR.1), changing data of a client (FR.2), viewing
data of a client (FR.3), and making searches on the client database (RF.4).

Considering CN.2, the analyst specified two requirements to address
the needed outcome (i.e., be aware of the clients that have to be
contacted). These requirements are related to registering a new contact
made with a client (FR.5) and viewing contacts that have to be made with
clients (FR.6). Table 12 presents a list of FRs specified based on CN.1 e
CN.2.

Table 12. Software requirements specification for CN.1 and CN.2 of the CRM

FR.1 - The CRM software shall allow the Account Manager to register a new client in the
database.

FR.2 - The CRM software shall allow the Account Manager to change data of a client in
the database.

FR.3 - The CRM software shall allow the Account Manager and the CRM Manager to view
data of a client in the database.

FR.4 - The CRM software shall allow the Account Manager and the CRM Manager to make
searches on the client database.

FR.5 - The CRM software shall allow the Account Manager to register a new contact
made with a client in the database.

FR.6 - The CRM software shall allow the Account Manager and the CRM Manager to view
the contacts that have to be made with clients.

Source: the authors

5 DISCUSSION AND MAIN CONTRIBUTIONS

This section discusses the three major contributions of the Problem-
Based SRS approach.

 Distinguishing the problem from the needs: Problem-Based SRS
approach proposes an alternative meaning for problems and needs. As
discussed in the related works section, the notions of problem and need
are often confusing and even ambiguous. Thus, the proposed concepts
contribute to enriching the comprehension and, consequently, the
precision of the specification.

 Software Glance concept: Authors proposed explicitly capturing the
early view of the envisage solution in form of a rough idea called software
glance. It represents what is in the software analyst’s mind in terms of
abstract view of the software solution after understanding the customer’s
problem. Therefore, the software glance provides an early guidance for
software analysts in the specification of software customer needs and
further software vision.

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 23
doi:10.21529/RESI.2016.1502002

 Comprehensive approach: the processes and concepts that
encompass the Problem-based SRS constitute a comprehensive
specification approach through a systematic organization of activities,
specification artifacts, and logical flow. The approach does not dictate a
specific work flow. Activities can be conducted sequentially or following
iterative and incremental flows (e.g. agile methods).

6 CONCLUSION AND FUTURE WORK

This paper introduced a new and comprehensive approach for the
specification of software requirements. The benefits of using a Problem-
based SRS approach are: (i) it provides a method that describes the
structure and links between concepts making clear the path to elaborate
the requirements specification based on the definition of the customer’s
problem, (ii) it clarifies and provides distinct concepts and notations for the
definition of customer problems and customer needs, and (iii) it structures
the early definition of the software through the concepts of software
glance and software vision.

The Problem-Based SRS approach enriches the process of software
requirements specification by making clearer how software requirements
are specified from the identification of the customer’s problems and
needs. Indeed, this may have a significant impact in the quality of
software requirements specification and in providing the right software to
the stakeholders in a business context. Moreover, the concepts and the
proposed process for the Problem-Based SRS approach are flexible enough
to be used together with current methodologies discussed in the related
works section, such as Gore and VPD.

 Although this paper presented an entire process for the specification
of software requirements, it did not present any technique to conduct each
process of the Problem-Based SRS approach. For instance, different
elicitation techniques may be used within the problem specifying process
like workshops and interviews. Developing techniques for the Problem-
Based SRS approach is in progress and the results will be presented in
future publications.

REFERENCES

 BLANK, S; DORF, B. The Startup Owner's Manual. K&S; Ranch. NBR
6023. 2012.

BOURQUE P.; FAIRLEY R. E. Guide to the Software Engineering Body of
Knowledge, Version 3.0, IEEE Computer Society, 2014. Available in:
http://www.computer.org/portal/web/swebok. Accessed in 17/11/2014.

DANEVA, M.; DAMIAN, D.; MARCHETTO, A.; PASTOR, O. Empirical research
methodologies and studies in Requirements Engineering: How far did we
come? Journal of Systems and Software, n. 95, p. 1-9, 2014.
http://dx.doi.org/10.1016/j.jss.2014.06.035

24 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2
 doi:10.21529/RESI.2016.1502002

DARDENNE, A.; VAN LAMSWEERDE A.; FICKAS, S. Goal-directed
requirements acquisition. Science of Computer Programming. 20.1: 3-50.
1993. http://dx.doi.org/10.1016/0167-6423(93)90021-G

DAVEY, B.; PARKER, K. Requirements elicitation problems: A literature
analysis. Issues in Informing Science and Information Technology, n. 12, p.
71-82, 2015.

DAVIS, A. M.; DIESTE, O.; HICKEY, A. M.; JURISTO, N.; MORENO, A. M.
Effectiveness of requirements elicitation techniques: Empirical results
derived from a systematic review. 14th IEEE International Requirements
Engineering Conference (RE'06), 2006.
http://dx.doi.org/10.1109/RE.2006.17

DORI, Dov. Object-process methodology: A holistic systems paradigm.
Springer Science & Business Media. 2011.

GIORGINI, P.; MYLOPOULOS, J.; NICCHIARELLI, E.; SEBASTIANI, R.
Reasoning with goal models. In: Conceptual Modeling-ER 2002 (pp. 167-
181). Springer Berlin Heidelberg. http://dx.doi.org/10.1007/3-540-45816-
6_22

HOFMANN, H.F.; LEHNER, F. Requirements engineering as a success factor
in software projects in IEEE Software, vol.18, no.4, pp.58-66, Aug 2001.
http://dx.doi.org/10.1109/MS.2001.936219

IBM. Knowledge Center, Rational Team Concert 4.0.5, Requirement
Management Application. 2015. Available in http://www-
01.ibm.com/support/knowledgecenter/SSCP65_4.0.5/com.ibm.rational.rrm.
help.doc/topics/r_vision_doc.html?lang=en-us. Accessed in 17/11/2015.

IEEE Computer Society. Software Engineering Standards Committee, and
IEEE-SA Standards Board. IEEE recommended practice for software
requirements specifications. Institute of Electrical and Electronics
Engineers, 1998. http://dx.doi.org/10.1109/IEEESTD.1998.88286

IIBA, A. Guide to the Business Analysis Body of Knowledge (BABOK Guide).
International Institute of Business Analysis (IIBA), 2009.

INCOSE, System Engineering Handbook, A Guide for System Life Cycle
Processes and Activities, Hoboken, Wiley, 2015.

ISO, IEC. IEEE, Systems and Software Engineering - Vocabulary.
ISO/IEC/IEEE 24765: 2010 (E) Piscataway, NJ: IEEE computer society.
http://dx.doi.org/10.1109/IEEESTD.2010.5733835

ISO, IEC. IEEE. 29148: 2011, Systems and Software Engineering -
Requirements Engineering. Technical report. 2011.
http://dx.doi.org/10.1109/IEEESTD.2011.6146379

JACKSON, M. A. Problem analysis using small problem frames. South
African Computer Journal, p. 47-60. 1999.

 Revista Eletrônica de Sistemas de Informação, v. 15, n. 2, mai-ago 2016, artigo 2 25
doi:10.21529/RESI.2016.1502002

JACKSON, M. A. Information and Software Technology, Special Issue on
Problem Frames, v. 47, n. 14, p. 903-912, November 2005.
http://dx.doi.org/10.1016/j.infsof.2005.08.004

JACOBSON, I.; BOOCH, G.; RUMBAUGH, J. Unified Software Development
Process. Addison-Wesley. 1999.

LEFFINGWELL, D.; WIDRIG, D. Managing software requirements: a use case
approach. Addison-Wesley Professional. 2003.

MCKEAN, Erin. The new oxford American dictionary. Vol. 2. New York:
Oxford University Press. 2005.

NOVAKOVIC, D.; HUEMER, C. A survey on business context. Intelligent
Computing, Networking, and Informatics, p. 199-211. Springer India, 2014.

OSTERWALDER, A; PIGNEUR, Y. Modeling value propositions in e-Business.
Proceedings of the 5th international conference on Electronic commerce.
ACM, 2003. http://dx.doi.org/10.1145/948005.948061

OSTERWALDER, A.; PIGNEUR, Y.; BERNARDA, G.; SMITH, A. Value
Proposition Design: How to Create Products and Services Customers Want.
Hoboken, John Wiley & Sons. 2014.

VALASKI, J; STANCKE, W; REINEHR S., MALUCELLI A. WER Overview:
Retrospective, Trends and Relevance. CLEIej, Montevideo, v. 17, n. 3, dec.
2014. Available in
http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S0717-
50002014000300004&lng=es&nrm=iso. Accessed in 17/11/2015.

VAN LAMSWEERDE, A. Goal-oriented requirements engineering: a
roundtrip from research to practice [engineering read engineering]. In
Requirements Engineering Conference, 2004. Proceedings. 12th IEEE
International (pp. 4-7). IEEE. http://dx.doi.org/10.1109/ICRE.2004.1335648

WIEGERS, K; BEATTY, J. Software Requirement. 3. ed. Pearson Education:
Microsoft Press, U.S. 2013.

YU, E; GIORGINI, P; MAIDEN, N; MYLOPOULOS, J. Social modeling for
requirements engineering, 1st ed. Cambridge: MIT Press. 2011.

ZOWGHI, D.; COULIN, C. Requirements Elicitation: A Survey of Techniques,
Approaches, and Tools, Engineering and Managing Software Requirements.
pp. 19-46). Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-
540-28244-0_2

