
 

Revista hospedada em: http://revistas.facecla.com.br/index.php/reinfo 
Forma de avaliação: double blind review 

    

    



 

    

    

(mapa de palavras com os termos mais  
frequentes nos artigos desta edição) 

Esta revista é (e sempre foi) eletrônica para ajudar a proteger o meio ambiente. Ela 
voltou a ser diagramada em uma única coluna para facilitar a leitura na tela do 
computador. Mas, caso deseje imprimir esse artigo, saiba que ele foi editorado com 
uma fonte mais ecológica, a Eco Sans, que gasta menos tinta. 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 1 
doi:10.5329/RESI.2010.0902004 

MOTIVATION TO CREATEMOTIVATION TO CREATEMOTIVATION TO CREATEMOTIVATION TO CREATE    FREE AND FREE AND FREE AND FREE AND OPEN SOURCE OPEN SOURCE OPEN SOURCE OPEN SOURCE 
PROJECTPROJECTPROJECTPROJECTSSSS    AND AND AND AND HOW HOW HOW HOW DECISIONSDECISIONSDECISIONSDECISIONS    IMPACT IMPACT IMPACT IMPACT SUCCESSSUCCESSSUCCESSSUCCESS1111,,,,2222

 

(paper submitted in September, 2010) 

 
Carlos Denner Santos Jr.Carlos Denner Santos Jr.Carlos Denner Santos Jr.Carlos Denner Santos Jr.    

Departamento de Ciência da Computação  
Universidade de São Paulo (USP) 

denner@ime.usp.br    

Kay M. NelsonKay M. NelsonKay M. NelsonKay M. Nelson    
College of Business  

Southern Illinois Univ. at Carbondale (SIUC) 
ikay@business.siuc.edu    

ABSTRACTABSTRACTABSTRACTABSTRACT    

As a consequence of the success of free and open source software such as Linux, 
organizations started to rethink development practices and opensource their applications. To 
opensource software means to release its source code open to the general public in the 
Internet. That has become an increasingly common strategy in the industry over the last years 
(e.g., Netscape-Navigator, IBM-Eclipse, and CAIXA-Curupira). However, what motivates 
organizations to commit their resources to publicize proprietary software is yet to be fully 
understood; and it is only after this motivation is comprehended that it will become possible to 
define, measure, and study success. This paper fulfills this gap in the literature by proposing a 
theoretical model that satisfies technical (software quality) and organizational (business value) 
requirements at the same time, defining what would be, thus, return on investment and how 
to achieve it. Specifically, the model proposes that, in opensourcing software, organizations 
should attempt (1) to attract users and developers, and (2) to receive contributions from 
them, mainly because achieving these goals makes it more likely to expand the user base and 
build an active community that constantly improves the software. To work towards these 
goals, this paper develops awareness of how (a) software architecture (modularity and 
interdependence), (b) programming language and integrated development environment, and 
(c) sponsor’s reputation and degree of commitment can influence a project’s dynamics. 

Key-words: open source software; free software; software development; technology adoption; 
business strategy; software quality; software industry; software engineering. 

RESUMORESUMORESUMORESUMO    

Como resultado do sucesso de iniciativas de software livre e aberto como o Linux, muitas 
empresas estão repensando suas práticas de desenvolvimento e utilizando software aberto 
em suas aplicações. A filosofia do software livre envolve a liberação do código fonte de forma 
aberta para o público em geral na Internet. Isto está se tornando uma prática cada vez mais 
comum no mercado, ao longo dos anos (ex., Netscape-Navigator, IBM-Eclipse e CAIXA-
Curupira). Contudo, o que motiva empresas a comprometer seus recursos e divulgar 
livremente o seu software ainda precisa ser melhor compreendido. Apenas depois que isso 
ocorrer será possível definir, medir e estudar o sucesso dessas iniciativas. Este artigo procura 
preencher esta lacuna na literatura, propondo um modelo teórico que satisfaça os requisitos 
técnicos (qualidade de software) e organizacionais (valor de negócio) simultaneamente, 
definindo o que seria o retorno do investimento e como obtê-lo. O modelo propõe que ao 
adotar software livre as empresas devem tentar (1) atrair usuários e desenvolvedores e (2) 
receber contribuições deles, principalmente porque, ao conseguir atingir esses objetivos, 
ficará mais fácil expandir a base de usuários e construir uma comunidade ativa que melhora o 
software constantemente. O artigo desenvolve a compreensão de como (a) a arquitetura de 
software (modularidade e interdependência), (b) a linguagem de programação e o ambiente 
de desenvolvimento e (c) a reputação do patrocinador e seu grau de comprometimento 
influenciam a dinâmica de um projeto. 

Palavras-chave: software aberto; software livre; desenvolvimento de software; adoção de 
tecnologia; estratégia; qualidade de software; setor de software; engenharia de software. 

                                            
1  A previous version of this paper was presented at AMCIS, in 2007. 
2  The authors would like to thank FAPESP for the funding, and FLOSS Competence Center 

(CCSL-IME-USP) for the technical support and structure provided. 



2 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

1111 INTRODUINTRODUINTRODUINTRODUCTIONCTIONCTIONCTION    

The low costs of communication through the Internet, the availability 
of people around the globe, and their willingness to develop software to 
fulfill their own and other’s needs have created a scenario that has never 
existed before. Volunteers are now developing software that can be used, 
modified and distributed by anyone, even if in support of for-profit 
activities. This type of software is referred to as Free and Open Source 
Software (FOS), and can be easily found nowadays in the Internet. 

According to Benkler (2006), the appearance of FOS has impacted the 
economy broadly, changing deeply the environment of industries in which 
players rely on information technology (IT) to operate. That impact comes 
from at least two sources: first, from the provision of software and 
infrastructure for application development at no acquisition cost; and 
second, from the publicity of the processes of how production activities 
take place in FOS (i.e., through peer-review in virtual communities). By 
adopting FOS tools and understanding these community processes, 
organizations interested in user-centric initiatives are able to adopt and 
adapt the ‘open source business model’, which relies on voluntary 
contributions to be successful (e.g., Wikipedia). The scope of FOS impact is 
not likely to change in the near future, for it has been empowered by 
major corporations, such as IBM, which made FOS part of their businesses, 
signaling that the socio-economic impact of free software is sustainable 
(RIEHLE, 2007; FITZGERALD, 2006). 

The high quality of FOS is recognized to be a result of the 
development practices of their communities. Consequently, corporations 
have tried to mimic FOS practices in order to achieve better results, 
increasing their proximity with customers. The resulted business practice 
consists of releasing software source code open to the community in the 
Internet, sharing knowledge in an attempt to receive contributions. As this 
practice popularizes, questions of when and how it can succeed (or not) 
become of interest to researchers and practitioners. This paper is a 
theoretical attempt to grasp founders’ motivations to engage in such 
practice, so far not fully understood (SANTOS JR., 2008). Furthermore, it is 
an attempt to explain the amount of contributions a project receives, and 
the number of contributors it has, both indicators of a FOS project 
attractiveness (SANTOS JR. et al., 2010). 

The number of corporations engaged in FOS communities can 
potentially change the entire organizational structure of the IS 
organization and lead to major shifts in corporate norms. So far, attention 
has been given in the management literature to volunteers’ motivations 
for engaging in such activities. The main findings concentrate on issues 
like increased reputation that leads to career advantages (HERTEL et al., 
2003). But corporate motivations have been overlooked. 

Some FOS are considered to be as good as their proprietary 
competitors. Apache, for example, is the leader in the web server industry 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 3 
doi:10.5329/RESI.2010.0902004 

for over a decade (VON KROGH; SPAETH, 2007). Thus, if one understands 
and is able to provide what attracts skillful volunteers, corporate 
opportunities might be realized. This setting gave birth to a new business 
strategy – opensourcing – which is an attempt to recruit contributors to 
develop and maintain software and to increase customer base (AGERFALK; 
FITZGERALD, 2008). However, when such practice becomes a trend, 
competition for the limited population of skillful people willing to devote 
their time to, first, study and understand and, second, to develop someone 
else’s source code is expected to increase (WEST; O’MAHONY, 2005). 
Consequently, the number of contributions expected to be received, on 
average, from adopting this practice, is reduced, creating a managerial 
problem and justifying careful analysis to apply corporate resources 
wisely. 

The recognition of the FOS impact in the software industry has 
resulted in an attempt to bring it closer to the corporate world, which 
required the investment of resources, bringing risks along (FITZGERALD, 
2006). The investment in opensourcing has many similarities with other 
practices such as downsizing, outsourcing, TQM, and so forth. This means 
that it might pay off or not, depending on the case and on the definition of 
success. 

In this paper, the business practice is represented as an attempt to 
get help from the community on internal production processes, especially 
those related to software development. For that, companies release 
software source code open on a website, and, from that moment on, 
expect to obtain inputs from volunteers to increase software quality, 
expanding their relationships with potential and current customers. 
Organizations that have adopted this model are, for example, the Brazilian 
government, Sun Inc. (Oracle) and SugarCRM. 

Specifically, this paper explores the influences of project 
characteristics such as overall software interdependence (cohesion), 
sponsor reputation, and the popularity of the programming language and 
integrated development environment (IDE) adopted on success. We 
understand that success is achieved through higher software quality, 
which would impact software adoption rates positively, benefiting then the 
sponsor-corporation business. 

The research questions discussed are: (1) What motivates 
corporations to opensource? (2) Does the IDE choice influence the project 
attractiveness to the community? (3) Does the programming language 
choice influence the project attractiveness to the community? (4) Does the 
overall software interdependence (cohesion) influence the project 
attractiveness to the community? (5) Does the sponsor reputation 
influence the project attractiveness to the community? 

The remainder of this paper is organized as follows: in the next 
section, a description of free and open source software communities is 
provided; theories of business practices and technology adoption are 
discussed afterwards; then, software interdependence, programming 



4 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

languages, IDE, and sponsor’s reputation are examined; and finally, results 
are discussed. 

2222 LITERATURE REVIEWLITERATURE REVIEWLITERATURE REVIEWLITERATURE REVIEW    

2.1 FREE AND OPEN SOURCE SOFTWARE AND COMMUNITIES 

The Internet relies on free and open source software surprisingly 
more than an inattentive user perceives. According to The Economist 
(2006), every “time Internet users search on Google, shop at Amazon or 
trade on eBay, they rely on open source software. More than two-thirds of 
websites are hosted using Apache, an open source product that trounces 
commercial rivals.” 

An open source community is composed of contributors, in the sense 
that they might be paid to contribute, buy may also be volunteers. These 
contributors are dispersed geographically and brought together through an 
IT structure, mainly the Internet (HERTEL et al., 2003; MARKUS et al., 
2000). These communities are virtual teams, which can be defined as “a 
group of people who interact through interdependent tasks guided by 
common purpose […] across space, time and organizational boundaries 
with links strengthened by webs of communication technologies” 
(LIPNACK; STAMPS, 1997, p. 18). By the same reasoning, virtual 
organizations were defined by DeSanctis and Monge (1999, p. 694) as 
“[...] a collection of geographically distributed, functionally and/or culturally 
diverse entities that are linked by electronic forms of communication and 
rely on lateral, dynamic relationships for coordination.” 

Additionally, Moon and Sproull (2002) point out some characteristics 
they have observed about open source software communities. They have 
identified: (1) “a general culture in which authority comes from 
competence”; (2) the presence of “delegative and participative leadership 
principles combined with clear responsibilities”; (3) “a modular project 
structure that decreases unnecessary complexity”; (4) “a parallel release 
policy that simultaneously enables rapid development and a stable 
working system”; (5) “a motivating credit policy that not only 
acknowledges the contributions of developers but also, for instance, 
documentation work”; (6) the presence of “clear rules and norms of the 
community that are communicated online”; and (7) “simple but reliable 
communication tools that are available worldwide (e-mail, file transfer, 
Usenet discussion groups).” 

Open source communities are composed of hobbyists, but the number 
of paid (e.g., by IBM) contributors developing open source software is 
increasing. Some of these communities have hundreds of members (e.g., 
Linux). For instance, Egyed and Joode (2004, p. 72) stated that “the 
Apache community roughly comprises 630 contributors of which about 90 
belong to the core developer group”. The product (software), as well as its 
content (source code), produced by those communities are always made 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 5 
doi:10.5329/RESI.2010.0902004 

available on the Internet free of charge. Contributors’ motivations have 
been the focus of past research (HERTEL et al., 2003). 

Previous studies have found that most of the volunteers’ effort can be 
explained by the enhanced reputation granted to them by being part of 
the group/project, which is referred to as the signaling motivation 
(O’MAHONY, 2003; VON HIPPEL, 2001). Similarly, it has been found that 
those developers were not motivated by monetary compensation, but by 
competitive reasons of status and reputation (HERTEL et al., 2003). To 
support these findings, Lee and Cole (2003) observed that every 
component (file) of the software comes with a credits file, recognizing and 
describing the work of each contributor publicly. 

Some open source software are market leaders, such as the Apache 
web server. Others such as Linux are considered good candidates to 
substitute proprietary software developed by corporations as big as 
Microsoft (HERT et al., 2003). The success of Linux, as stated by Lee and 
Cole (2003, p. 178), “demonstrated the feasibility of a large-scale, online 
collaboration effort where developers and users can be one and the 
same”. However, most of free and open source projects have no 
expressiveness or competitiveness. 

In this scenario that blends success and failure, one important topic of 
study is how to make use of the open source software practices as building 
blocks for delivering business value. As stated by Hertel et al. (2003), one 
of the aspects of open source software that is most compelling to business 
is its predominant voluntary characteristic, in which contributors are not 
supported by organizations in the traditional sense. This paper is a step 
towards understanding what can separate successful projects from the 
rest. 

2.2 ADOPTION OF BUSINESS PRACTICES AND TECHNOLOGY 

It is common in the management literature to assume that managers 
decide under norms of rationality. It is assumed similarly here (i.e., an 
implemented strategy represents an intention to achieve specified goals). 
Accordingly, we know that adopters of FOS practices are looking for 
“desirable” outcomes. In the case of opensourcing, source code releasers 
intend to receive external feedback on their products and attract as many 
people as possible, what translates into business value by magnifying 
brand exposure, user base and software quality (SANTOS JR. et al., 2010). 

However, this scenario of rationality represents one stream of thought 
used to explain why managers decide to adopt a business practice or 
technology. The opposite of this situation would be what has been deemed 
in the literature as fad and fashion, and constitutes the second stream of 
thought used to describe managerial behavior. Abrahamson and Fairchild 
(1999, p. 709) defined fad and fashion as a “relatively transitory collective 
beliefs, disseminated by the discourse of management-knowledge 
entrepreneurs that a management technique is at the forefront of rational 
management progress.” To act under these conditions increases the 



6 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

likelihood of failure on the task of achieving a goal. Nevertheless, the 
imitator would have its expected goal defined by imitation, which would 
thus be the same of the rational manager. 

Despite the difficulty of providing definitive empirical proof, there is 
an extensive body of research on the theme of fad and fashion in the 
management literature. A variety of management techniques are available 
to managers nowadays. Some examples are downsizing, TQM, agile 
methods, and software source code release. These techniques are not 
expected to work in any situation, and most of them become less popular 
over time. Thus, as companies continue to contrive to “follow the crowd”, 
adoption’ patterns appear to partly fit theories of fad and fashion too 
(FICHMAN, 2004; MILLER; HARTWICK, 2002; BENDERS; VAN VEEN, 2001). 

Having presented the two main perspectives on practice adoption, 
this study assumes that managers should attempt to be rational in their 
choices of releasing software source code to the community. In other 
words, managers expect that projects gain attention and remain active 
after public release. Thus, as a starting point, an assumption to be 
empirically tested by further research is set, allowing the second objective 
of the paper to be pursued – that is, to study the determinants of the 
numbers of contributions and contributors of a project. 

 PPPProposition roposition roposition roposition 1111: Managers release source code open to receive as many 
external inputs, and to attract as many viewers, users and contributors, as 
possible; these outcomes are believed to increase software quality, brand 
exposure and, ultimately, business and/or social value. 

3333 MODEL DEVELOPMENTMODEL DEVELOPMENTMODEL DEVELOPMENTMODEL DEVELOPMENT    

The existence and popularity of a corporate trend to release 
proprietary hardware design and software as open source is the 
phenomenon under investigation here (e.g., IBM’s Eclipse and Sun’s 
UltraParc). So far, past research has focused on the volunteer side, 
studying its psycho-sociological motivations. However, research findings 
suggest that only about a third of the variance of open source software 
developers’ contributions can be explained by motivation variables (LI et 
al., 2006). Accordingly, we adopt a different set of variables in order to 
pursue the explanation of the remaining non-explained variance. 

The model here developed focuses on characteristics of the software 
and the overall project. For example, preliminary analysis of the data 
collected from SourceForge.net suggested that the number of members a 
project has vary significantly across different groups of projects (e.g., 
database and financial). However, the specifics of how these groups’ 
characteristics are able to affect their ability to have contributors are not 
fully understood. 

The set of variables chosen to explain the corporate-sponsored open 
source project attractiveness can be divided in three distinct groups or 
theoretical constructs. First, we discuss a construct called project 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 7 
doi:10.5329/RESI.2010.0902004 

architecture, which is composed of characteristics such as programming 
language, IDE, and modularity levels. Second, sponsor’s reputation is 
introduced. Third, the sponsor’s degree of commitment to the project, 
meaning the number of paid-developers and money invested on it, is 
presented. Finally, these constructs’ influences on project attractiveness 
are expanded into a more operational, lower level, model. These proposed 
relationships are depicted in Figure 1. 

 

Figure 1. Higher-Level Theoretical Model 

Source: the authors 

3.1 PROJECT ARCHITECTURE 

3.1.1 Software interdependence 

 In general, Cheng (1983) defined work interdependence within 
organizations as the extent to which a task requires its involved members 
to exchange information with one another. This definition goes beyond 
Thompson’s (1967) workflow definition, which considered only the 
exchange of materials and objects between units. 

To develop software is an organizational task and can be broken down 
in parts, called modules, which can be understood as chunks of the overall 
software. The final product (application) is the aggregate of its parts 
(modules), which in turn can also be seen as an organizational task. 
Possibly, the social composition of interdependence is beyond the 
workflow between actors. However, in the case of software development, 
the interdependence of the members has been considered a consequence 
of the technical interdependence of the modules. Thus, we discuss 
technical and social interdependence interchangeably. Modules might be 
dependent on each other in several ways. It is this degree of this 
interdependence between modules (or actors) that we refer to as 
interdependence. 



8 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

Baldwin and Clark (2003) demonstrated that modular projects have 
advantages in recruiting contributors. The more modules you have, the 
more opportunities you offer, which enhances your chances of receiving 
contributions (BENKLER, 2006). However, one thing that cannot be set 
aside is that the quantity of modules is expected to influence 
interdependence between them. A trade-off exists here. 

Especially in the open source case, where people work geographically 
dispersed and the main communication tool is e-mail, interdependence is 
expected to be one of the main factors for maintaining an active 
community (WEST; O’MAHONY, 2005; MACCORMACK et al., 2006). The 
relationship between interdependence and contributions was studied by 
DeSouza et al. (2004a) and DeSouza et al. (2004b). They demonstrated 
that software with low interdependence is more likely to receive 
contribution than those with high interdependence. Low interdependence 
facilitates the source code inspection function (debugging), software 
testing, comprehension, maintenance and parallelization (XU et al., 2005; 
COUNSELL; SWIFT, 2006). 

Moreover, volunteers tend to enjoy working independently. So, one 
would expect that developers would pursue less interdependent modules 
as much as possible, for a trade-off between interdependence and source 
code programming learning difficulty exists. That creates a complex 
scenario; where modularity stimulates contributions, but also favors 
complexity because one module cannot be built completely independent 
from the others (DESOUZA et al., 2004a). Therefore, manager’s control 
regarding the number of modules and the degree of interdependence 
between them is crucial for FOS project founders. 

Nevertheless, managerial action on these matters may fail for 
different reasons, for example: (1) software development activities suffer 
pressure from customers for new features constantly; (2) market 
strategies push deadlines (MOCKUS; HERBSLEB, 2002); and (3) commonly, 
different versions of one software have to be managed in distributed 
activities, such as open source development. 

In sum, two factors are expected to influence each other and, 
consequently, the number of contributions received: the quantity of 
modules (quantity of opportunities offered) and the degree of 
interdependence. Thus, we have that: 

 PPPProposition roposition roposition roposition 2.12.12.12.1: The quantity of modules is positively correlated with 
the number of contributions received. However, this relationship is 
moderated by the degree of interdependence among the modules. 

 PPPProposition roposition roposition roposition 2.22.22.22.2: The quantity of modules is positively correlated with 
the number of contributors. However, this relationship is moderated by the 
degree of interdependence among the modules. 

In a nutshell, the number of contributions received and the number of 
contributors are expected to increase along with the quantity of modules 
up to a certain degree of interdependence, where the costs of 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 9 
doi:10.5329/RESI.2010.0902004 

‘understanding’ the whole software becomes prohibitive and makes the 
relationship between the factors inversely proportional. 

3.1.2 Programming language 

 Software source code is written in a language, and the diversity of 
programming languages available continues to grow. For example, 
operating systems such as Linux are normally written in C, web sites might 
be written in Perl, JavaScript, Java, or a combination of them. Moreover, 
software applications such as Microsoft Word or Mozilla Firefox might have 
code in those languages mentioned, as well as Delphi, Visual Basic, C# 
and others. Software such as the OpenOffice might have source code in 
various languages. 

To develop software requires “fluency” on the language it is written 
in. In the case of maintenance, it is the original language that must be 
used to add new, or fix existing, source code. Programming languages 
vary in functionality, portability, compatibility, ease of use, and popularity. 
Some are open source and others are proprietary. Therefore, we should 
expect the choice of which programming language to adopt in a software 
development project to influence its dynamics. 

In the context of open source, the choice of programming language 
restricts the population of potential contributors to a smaller group that is 
familiar with and sufficiently skilled on that language. For example, the 
TIOBE Index for August 2010 found that Java is the most popular language, 
with thousands of FOS projects using it (TIOBE, 2010). 

The availability of support and easiness of access to documentation 
are direct consequences of the programming language adopted. 
Therefore, a balance between the language characteristics needed or 
desired in a project and the popularity of the language among potential 
contributors is likely to increase the probability of receiving contributions 
and attracting contributors. This is especially true in the case of a project 
that intends to be attractive to open source sympathizers. If the software 
language is proprietary, the opportunity is not expected to be seen as 
favorably by the open source community, which is usually composed of 
people who advocate against proprietary licenses. So, a potential misfit 
between proprietary languages and projects of this nature might occur. 
Thus, we have that: 

 PPPProposition roposition roposition roposition 3.13.13.13.1: The more popular a programming language is among 
the population of potential contributors, the more contributions a project 
receives, when a misfit is not observed. 

 PPPProposition roposition roposition roposition 3.23.23.23.2: The more popular a programming language is among 
the population of potential contributors, the more contributors a project 
has, when a misfit is not observed. 



10 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

3.1.3 Integrated development environment 

Integrated Development Environment (IDE) is another variable that 
must be considered when deciding which language to adopt in an open 
source software project. The programming language choice restricts the 
options of IDE, and vice-versa. This is expected to influence the likelihood 
of receiving inputs and attracting volunteers due to their familiarity with 
and willingness to learn a specific language/IDE adopted in a project. 

IDE was firstly and broadly defined by Konsynski et al. (1984, p. 67) 
as “a complete and unified set of concepts, techniques, and tools that 
covers the entire development process.” Later, and precisely related to 
software development, it was described by Kline and Seffah (2005, p. 608) 
as a “computer software that generally consists of a source code editor, a 
compiler or interpreter (or both), build-automation tools, and a debugger. 
Examples of IDEs for Java programming include Eclipse, Netbeans, Forte 
(Sun Microsystems), VisualAge for Java (IBM), JBuilder (Borland), Visual 
Cafe (Symantec), and Visual J# (Microsoft), and examples for C++ 
programming include Visual C++ (Microsoft) and C++ Builder (Borland).” 
So, as it was stated, each IDE supports specific languages, and a specific 
language is supported by a smaller group within the population of 
available IDEs. Thus, priority must be set on which decision to make first, 
the language or the IDE. 

The use of IDE, especially of one that is popular among developers, is 
expected to influence productivity. According to Kline and Seffah (2005, p. 
607), IDEs vary on functionality, usability and are “difficult to use, learn, 
and master”, which creates costs to develop software with it. Furthermore, 
Kline and Seffah (2005, p. 625) explain that “developers should be 
provided with IDEs that offer functionalities in more rational, less  visually 
complex formats that reinforce the relation between a specific 
functionality and the software artifacts on which that functionality acts.” In 
addition, there is an increasing amount of information available on IDEs, 
such as expert’s opinion, polls, and public awards. Likely, this scenario 
influences anything with a specific IDE image linked to it. Thus, just as a 
programming language is expected to influence the project’s contributions 
and contributors, so is the IDE. 

 PPPProposition roposition roposition roposition 4.14.14.14.1: The more popular an IDE is among the population of 
potential contributors, the more contributions a project receives, when a 
misfit is not observed. 

 PPPProposition roposition roposition roposition 4.24.24.24.2: The more popular an IDE is among the population of 
potential contributors, the more contributors a project has, when a misfit is 
not observed. 

3.2 SPONSOR’S REPUTATION 

It has been shown in the literature that open source project 
volunteers are partly motivated by the opportunity to work on state-of-the-
art software, but are mainly motivated by signaling their skills (HERTEL et 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 11 
doi:10.5329/RESI.2010.0902004 

al., 2003). Thus, it is implied that they are interested in being hired by 
open source project sponsors. Also, one should notice that IT job 
advertisements can be found on open source projects’ repositories, such 
as Sourceforge.net or Github.com. 

Accordingly, the potential contributor perception of “value” of a FOS 
project, which is influenced by its sponsors’ reputation in the IT industry, 
potentially influences the decision of an individual to become a member of 
a project as well as to contribute to it. Thus, we have that: 

 PPPProposition roposition roposition roposition 5.15.15.15.1: The number of contributions a project receives 
increases with its sponsors’ reputation in the IT industry. 

 PPPProposition roposition roposition roposition 5.25.25.25.2: The number of contributors a project has increases 
with its sponsors’ reputation in the IT industry. 

3.3 SPONSOR’S DEGREE OF COMMITMENT 

3.3.1 Quantity of developers paid by sponsor 

The more resourceful (i.e., money and reputation) a project’s sponsor 
is, the more visible the project will be. For example, IBM, the main sponsor 
of the Eclipse project, as demonstrated by O’Mahony (2005), is the major 
contributor of bug reporting and bug fixing, showing how representative 
the role of paid contributors can be. Also, it was stated at the Open Source 
Workshop at the University of Texas at Austin on May 2nd, 2006 that IBM 
provides approximately 800 developers to work on open source projects 
on a full-time basis. Consequently, projects that receive help from paid 
contributors tend to have a constant level of activity, increasing its 
visibility, reputation and quality, as judged by potential contributors. 
Additionally, Hert et al. (2003, p. 1168) pointed out that “the more 
developers were paid for their Linux-related work the more time they 
spent [on the activity]”. Thus, we have that: 

 PPPProposition roposition roposition roposition 6.16.16.16.1: The more paid-contributors a FOS project has, the 
more contributions from volunteers it receives. 

 PPPProposition roposition roposition roposition 6.26.26.26.2: The more paid-contributors a FOS project has, the 
more volunteers it attracts. 

3.3.2 Money spent on the project 

 Finally, the amount of money spent on the FOS project by sponsors 
for its planning, releasing and advertising is expected to influence 
positively its dynamics. Many open source projects exist nowadays, 
increasing competition for skillful contributors and their time. 
Consequently, it is very unlikely that a developer willing to contribute 
would consider each and every one available before deciding in which to 
engage. Visibility is an issue expected to be influenced by investment in 
the promotion and advertising of the FOS project. Moreover, the more time 
(workforce) that is devoted to activities such as the planning or evaluation 
of a project, the more improvement is expected to be observed (e.g., 



12 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

better balance of the quantity of modules and the interdependence among 
them, or the adoption of more suitable decision-making processes). Thus, 
we have that: 

 PPPProposition roposition roposition roposition 7.17.17.17.1: The more time and money a FOS project’s sponsors 
devotes to its promotion and advertising, the more contributors the project 
has. 

 PPPProposition roposition roposition roposition 7.27.27.27.2: The more time and money a FOS project’s sponsors 
devotes to its promotion and advertising, the more contributions the 
project receives. 

Figure 2 depicts all propositions. Next, a discussion section appears 
with the final remarks of this paper, pointing out implications, limitations 
and future directions. 

 
Figure 2. Lower-level theoretical model 

Source: the authors 

4444 CLOSING REMARKSCLOSING REMARKSCLOSING REMARKSCLOSING REMARKS    

 The adoption of open source software and practices in organizations 
are reshaping the software industry. A satisfactory understanding of this 
phenomenon has not been achieved yet, creating a need for exploratory 

Number of 
sponsored-
contributors 

(P6s) 

Programming 
language’s 
and IDE’s 
popularity 
(P3s, P4s) 

Money and 
time 

invested 
(P7s) 

Sponsor’s 
reputation 

(P5s) 

Quantity of 
modules 

(P2s) 

Number of 
contributions 

and 
contributors 

Fit or 
misfit 

Modules 
interdependence 

Software Software Software Software 
qqqqualityualityualityuality    



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 13 
doi:10.5329/RESI.2010.0902004 

studies and model development, such as this one in order to create 
theoretical grounds for future empirical validation. 

The open source software recognition of high quality and capability of 
substituting proprietary software is a consequence of the model of 
development adopted by the communities. Because of this, organizations 
have tried to copy and adapt their practices. As technology, such as open 
source, adoption increases in companies, and understanding how and why 
this occurs becomes of interest to researchers and practitioners alike 
(GALLIVAN et al., 2005). This paper is a first attempt to discover which 
variables are good candidates for explaining the number of contributions 
(inputs) and the number of contributors that a free and open source 
software project has. To do so, we focused on sponsors’ and projects’ 
characteristics that potentially make them more likely to stand out in 
competition with others, receiving more inputs from contributors as well as 
attracting more developers to become members. However, as a first step, 
our approach is not free of limitations and further research is clearly 
needed. 

Given that this is a theoretical paper, its main limitation is the lack of 
empirical data to support the propositions. As such, its first proposition and 
main assumption might not hold; that is, it might be the case that 
receiving inputs on software development from external contributors and 
having a large number of members in the project are secondary and 
considered only a desirable side-effect. In that case, those would not be 
the main goals of launching software open to the public as we have 
assumed. 

Perhaps managers’ real intention when soliciting open source 
contributions is motivated by something else. Possible conflicting 
explanations could include the development of a vehicle of advertisement 
or the reduction of future employee hiring costs since successful 
contributions (by a volunteer) result in less need for training and a faster 
learning curve for the hired volunteer. Only empirical research is able to 
answer this question and examine these possibilities. Furthermore, the 
explanatory variables presented here are arbitrary and, could, potentially, 
be accompanied of others such as contributors’ ideology level or source 
code metrics, for example (STEWART; GOSAIN, 2006; MEIRELLES et al., 
2010). Nevertheless, this paper sets the necessary background to perform 
future field studies to expand and revise the model, which should then be 
encouraged. 

By presenting a potential set of causes for attracting contributors and 
receiving contributions to organizational free and open source software 
projects, this paper begins to define the dynamics of how virtual 
organizational structures and existing social structures meet and collide. 
Software developers may no longer be recruited through traditional 
channels; rather they could be “auditioned” via their open source 
contributions. As a result, the culture of organizations may also become 
significantly more competitive. Employees will no longer compete only 



14 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

with each other; they will have to work harder to keep their skills current 
because their work will be compared to that of the open source 
community. Additionally, technical skills will become more easily 
replaceable, but business domain knowledge may become the key to 
stable employment. The first step in understanding this phenomenon is to 
uncover what motivates organizations to enter in the open source world 
and what enticements they can (and are willing to) offer to obtain 
participation. 

REFERREFERREFERREFEREEEENCNCNCNCESESESES    

ABRAHAMSON, E.; FAIRCHILD, G. B. Management fashion: Lifecycles, 
triggers, and  collective learning processes. Administrative Science 
Quarterly, v. 44, p. 708-740, 1999. doi:10.2307/2667053 

AGERFALK, P.; FITZGERALD, B. Outsourcing to an unknown workforce: 
exploring opensourcing as a global sourcing strategy. MIS Quarterly, v. 32, 
p. 385-409, 2008. 

BALDWIN, C.; CLARK, K. Does code architecture mitigate free riding in the 
open source development model? Working paper, Harvard Business 
School, June 1, 2003. Available at: 
http://www.people.hbs.edu/cbaldwin/DR2/BaldwinClark.ArchOS.Jun03.pdf. 
Accessed: Oct. 12, 2010. 

BENDERS, J.; VAN VEEN, K. What’s in a Fashion? Interpretative Viability 
and Management Fashion. Organization, v. 8, n. 1, 33-53, 2001. 
doi:10.1177/135050840181003 

BENKLER, Y. The wealth of networks: how social production transforms 
markets and freedom. New Haven and London: Yale University Press, 
2006. 

COUNSELL, S.; SWIFT, S. The interpretation and utility of three cohesion 
metrics for object-oriented design. ACM Transactions on Software 
Engineering and Methodology, v. 15, n. 2, p. 123-149, 2006. 
doi:10.1145/1131421.1131422 

CHENG, J. Interdependence and coordination in organizations: a role-
system analysis. Academy of Management Journal, v. 26, n. 1, 1983. 
doi:10.2307/256142 

DESANCTIS, G.; MONGE, P. Introduction to the special issue: 
communication processes for virtual organizations. Organization Science, 
v. 10, n. 6, p. 693-703, 1999. doi:10.1287/orsc.10.6.693 

DESOUZA, C.; REDMILES, D.; CHENG, L.; MILLEN, D.; PATTERSON, J. 
Sometimes you need to see through walls: a field study of Application 
Programming Interfaces. In: CSCW’04, Chicago, Illinois, USA, November 6–
10, 2004a. 

DESOUZA, C.; REDMILES, D.; CHENG, L.; MILLEN, D.; PATTERSON, J. How a 
good software practice thwarts collaboration: the multiple roles of APIs in 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 15 
doi:10.5329/RESI.2010.0902004 

software development. In: SIGSOFT’04/FSE-12, Newport Beach, CA, USA, 
Oct. 31–Nov. 6, 2004b. 

EGYED, T.; JOODE, R. Standardisation and other coordination mechanisms 
in open source software. International Journal of IT Standards and 
Standardization Research, v. 2, n. 2, 2004.  

FICHMAN, R. Going beyond the dominant paradigm for information 
technology innovation research: emerging concepts and methods. Journal 
of the Association for Information Systems, v. 5, n. 8, p. 314-355, 2004. 

FITZGERALD, B. The transformation of open source software. MIS 
Quarterly, v. 30, n. 3, p. 587-598, 2006. 

GALLIVAN, M.; SPITLER, V.; KOUFARIS, M. Does information technology 
training really matter? A social information processing analysis of 
coworkers’ influence on IT usage in the workplace. Journal of Management 
Information Systems, v. 22, n. 1, p. 153-192, 2005. 

HERTEL, G.; NIEDNER, S.; HERRMANN, S. Motivation of software developers 
in open source projects: an internet-based survey of contributors to the 
Linux kernel. Research Policy, v. 32, p. 1159–1177, 2003. 
doi:10.1016/S0048-7333(03)00047-7 

KLINE, R.; SEFFAH, A. Evaluation of integrated software development 
environments: challenges and results from three empirical studies. 
International Journal Human-Computer Studies, v. 63, p. 607–627, 2005. 
doi:10.1016/j.ijhcs.2005.05.002 

KONSYNSKI, B.; KOTTEMANN, J.; NUNAMAKER, J.; Stott, J. PLEXSYS-84: An 
Integrated Development Environment for Informational Systems. Journal of 
Management Information Systems, v. 1, n. 3, 1984. 

LEE, G.; COLE, R. From a firm-based to a community based model of 
knowledge creation: the case of Linux kernel development. Organization 
Science, v. 14, n. 6, p. 633-649, 2003. doi:10.1287/orsc.14.6.633.24866 

LI, Y.; TAN, C.; TEO, H.; MATTAR, A. Motivating open source software 
developers: influence of transformational and transactional leaderships. In: 
Proceedings of the 44th ACM International Conference on Computer 
Personnel Research (SIGCPR), Claremont, California, USA, 2006. 

LIPNACK, J.; STAMPS, J. Virtual teams. New York: John Wiley and Sons, Inc., 
1997. 

MACCORMACK, A.; RUSNAK J.; BALDWIN, C. Exploring the structure of 
complex software designs: an empirical study of open source and 
proprietary code. Management Science, v. 52, n. 7, p. 1015-1030, 2006. 
doi:10.1287/mnsc.1060.0552 

MARKUS, M.; MANVILLE, B.; AGRES, C. What makes a virtual organization 
work? Sloan Management Review, v. 42, n. 1, p. 13-26, 2000. 

MEIRELLES, P.; SANTOS Jr., C.; TERCEIRO, A.; MIRANDA, J.; CHAVEZ, C., 
KON, F. A Study of the relationships between source code metrics and 



16 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4  
 doi:10.5329/RESI.2010.0902004 

attractiveness in free software projects. In:  Brazilian Symposium on 
Software Engineering (SBES), 2010, Salvador, Brazil. 
doi:10.1109/SBES.2010.27 

MILLER, D.; HARTWICK, J. Spotting management fads. Harvard Business 
Review, v. 80, n. 10, p. 26-27, 2002. 

MOCKUS, A.; HERBSLEB, J. Why not improve coordination in distributed 
software development by stealing good ideas from open source? In: ICSE 
‘02 Workshop on Open Source Software Engineering, p. 35-37, Orlando, 
FL, 2002. 

MOON, J.; SPROULL, L. Essence of distributed work: the case of the Linux 
kernel. First Monday, v. 5, n. 11, 2000. 

O’MAHONY, S. Guarding the commons: how community managed software 
projects protect their work. Research Policy, v. 32, n. 7, p. 1179-1198, 
2003. doi:10.1016/S0048-7333(03)00048-9 

O’MAHONY, S. Competing on a common platform. In: Eclipse Members 
Meeting, Chicago, Illinois, USA, September 22, 2005. 

RIEHLE, D. The economic motivation of open source software: stakeholder 
perspectives. IEEE Computer, v. 40, n. 4, p. 25-32, 2007. 

SANTOS Jr., C. Understanding partnerships between corporations and the 
open source community: a research gap. IEEE Software, v. 25, n. 6, 2008. 

SANTOS Jr., C.; PEARSON, J.; KON, F. Attractiveness of free and open 
source software projects. In: European Conference on Information Systems 
(ECIS), 2010, Pretoria, South Africa. 

STEWART, K.; GOSAIN, S. The impact of ideology on effectiveness in open 
source software development teams. MIS Quarterly, v. 30, p. 291-314, 2006. 

TIOBE. Programming Community Index for October 2010. 2010. Available 
at: : http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html. 
Accessed: Oct. 10, 2010. 

THE ECONOMIST. Open-source business: open, but not as usual. March 
16th, 2006. Available at: http://www.economist.com/node/5624944. 
Accessed: Oct.10, 2010. 

THOMPSON, J. Organizations in Action. New York: McGraw-Hill, 1967. 

VON HIPPEL, E. User toolkits for innovation. Journal of Product Innovation 
Management, v. 18, pp. 247-257, 2001. doi:10.1016/S0737-
6782(01)00090-X 

VON KROGH, G.; SPAETH, S. The open source software phenomenon: 
characteristics that promote research. Journal of Strategic Information 
Systems, v. 16, p. 236-253, 2007. doi:10.1016/j.jsis.2007.06.001 

XU, B.; QIAN, J.; ZHANG, X.; WU, Z.; CHEN, L. A brief survey of program 
slicing. In: SIGSOFT Softw. Eng. Notes, v. 30, n. 2, p. 1-36, 2005. 



 

 Revista Eletrônica de Sistemas de Informação, v. 9, n. 2, artigo 4 17 
doi:10.5329/RESI.2010.0902004 

WEST, J.; O’MAHONY, S. Contrasting community building in sponsored and 
community founded open source projects. In: Proceedings of the 38th 
Annual Hawaii International Conference on System Sciences, Waikoloa, 
Hawaii, 2005. doi:10.1109/HICSS.2005.166 


