

Revista hospedada em: http://revistas.facecla.com.br/index.php/reinfo
Forma de avaliação: double blind review

Esta revista é (e sempre foi) eletrônica para ajudar a proteger o meio ambiente, mas,
caso deseje imprimir esse artigo, saiba que ele foi editorado com uma fonte mais
ecológica, a Eco Sans, que gasta menos tinta.

 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7 1
doi:10.5329/RESI.2011.1002007

TOWARDS EASING THE INSTANTIATION OF
APPLICATIONS USING GRENJ FRAMEWORK BY MEANS OF

A DOMAIN SPECIFIC LANGUAGE

(artigo submetido em dezembro de 2010)

Vinicius Humberto Serapilha Durelli

Instituto de Ciências Matemáticas e de
Computação – Univ. de São Paulo (USP)

durelli@icmc.usp.br

Rafael Serapilha Durelli
Ciência da Computação – Universidade

Federal de São Carlos (UFSCar)
rafael_durelli@dc.ufscar.br

Simone de Sousa Borges
Ciência da Computação – Universidade

Federal de São Carlos (UFSCar)
simoneborges@acm.org

Rosana Teresinha Vaccare Braga
Instituto de Ciências Matemáticas e de

Computação – UNIV. DE SÃO PAULO (USP)
rtvb@icmc.usp.br

ABSTRACT

White-box frameworks are a collection of extensible classes representing reusable
designs that can be extended, to varying degrees, to instantiate custom-tailored software
systems. Due to its inherent benefits (e.g., large-scale reuse of code, design, and domain
knowledge), such domain-specific reuse approach has become a de facto standard to
implement business systems. However, in order to fully realize the advantages of white-
box frameworks, developers need to have substantial architectural and technical
knowledge. In effect, developers must be familiar with the framework's extension points
(e.g., hot spots) and how to program those extensions using the programming language
in which the framework was implemented. GRENJ is a white-box framework implemented
in Java. Thus, instantiating applications through such framework is quite complex and
demands detailed architectural knowledge and advanced Java programming skills. In
order to lessen the amount of source code, effort, and expertise required to instantiate
applications by using GRENJ framework, we have developed a domain specific language
that manages all application instantiation issues systematically. This domain specific
language facilitates the application instantiation process by acting as a facade over GRENJ
framework as well as providing the user with a more concise, human-readable syntax
than Java. In this paper, we contrast the major differences and benefits resulting from
instantiating applications solely using GRENJ framework and indirectly reusing its source
code by applying our domain specific language.

Key-words: object-oriented framework; domain specific language; java; ruby

2 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7
 doi:10.5329/RESI.2011.1002007

1 INTRODUCTION

Over the past decades, a myriad of software technologies have been
devised for overcoming the intricacies of developing software systems.
Among such technologies, reuse has been reckoned as one of the most
important software technologies. Towards this end, a number of reuse
techniques have been developed: software libraries, components, design
patterns, etc. Currently, it is commonplace developing software systems
as an assemblage of many preexisting elements and a few new ones
pieced together. In practice, the lesser the amount of code developers
have to implement from scratch, the shorter the time to market will be.

Object-oriented frameworks are a reuse technique that has been
widely used by academics and practitioners alike. An object-oriented
framework consists of a collection of several fully or partially implemented
components that cooperate among themselves, thereby implementing a
software architecture for a family of applications belonging to a specific
domain. Frameworks have components that are designed to be either
extensible or replaceable, these components are called variation points or
hot spots of the framework (JOHNSON, 1997). Developers are able to
customize and extend these variation points through application-specific
source code, creating applications according to their needs. Thus,
frameworks provide support for large-scale reuse of source code as well as
their underlying architecture design (FAYAD et al., 1999).

Despite the benefits provided by frameworks, instantiating applications
is a complex task for which architectural knowledge is required. Since the
most common way to instantiate applications using a framework is to
inherit from abstract classes defined in the framework, the following issues
hinder the instantiation process: (i) the lack of adequate documentation;
(ii) the need to know where the customization source code should be
written and which sort of code is needed to extend each variation point;
(iii) the fact that variation points may either have interdependencies or be
optional; (iv) the fact that frameworks may provide several ways of adding
the same functionality; and (v) the fact that the implementation language
compiler cannot verify instantiation restrictions, being unable to report
instantiation error messages (FONTOURA et al., 2000).

In order to overcome the difficulties related to application
instantiation using frameworks, we propose an approach that is based on
developing a domain specific language (DSL) so that it can manage all
application instantiation issues systematically. A DSL is a programming
language geared towards expressing more clearly a particular problem
domain; conversely, conventional programming languages are more
general purpose. Thus, the syntax and semantics of DSLs reflect concepts
of their respective problem domain. A similar approach proposed by
Fontoura et al. (2000) consists in creating a DSL for each variation point. In
our approach, only one DSL, which acts as a facade over the framework
being encapsulated, is implemented. Hence, by using a DSL the developer
is able to describe the application being instantiated as concepts from the

 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7 3
doi:10.5329/RESI.2011.1002007

application domain, not concepts of a general-purpose programming
language. In summary, framework instantiation implies investment of the
organization to make sure that software developers know enough details
about the framework, but this might not guarantee that the instantiation is
free of errors, as it is often a complex, repetitive and error-prone task.

Aimed at describing our approach and the DSL we have developed,
the remainder of this paper is structured as follows. Section 2 presents
background on DSLs. Section 3 describes researches that also focus on
ways of easing the application instantiation process. Section 4 presents
the GRENJ framework and gives an overview of previous research and
technologies that played an important role during GRENJ development.
Section 5 presents an evaluation performed to ascertain whether GRENJ
framework domain is appropriate for being represented as a textual DSL,
Section 6 highlights the major features of the DSL we have developed, and
Section 7 contrasts the major differences between instantiating
applications using GRENJ framework and applying our DSL. Section 8 takes
a step back and presents the pros and cons of using DSLs in general. It
describes such information in a high-level fashion so that managers and
senior developers can reflect and decide whether they should invest in the
implementation of DSLs for their underlying problem domains. Section 9
concludes the paper with an outlook on future work, some concluding
remarks, and limitations of our DSL.

2 DOMAIN SPECIFIC LANGUAGES

Domain specific languages (DSLs) are small languages tailored
towards better expressing concepts of a particular domain (VAN DEURSEN
et al., 2000). Usually, most of them are declarative and, consequently,
they can be regarded as specification languages. These small, declarative,
special-purpose languages have a simplified suite of notations that is
tailored toward their domain abstractions, features, semantics, and jargon.
Hence, by using DSLs, developers perceive themselves as dealing directly
with domain concepts (SPRINKLE et al., 2009).

DSLs can be divided into two groups: external and internal (FOWLER,
2009). External DSLs have their own custom-built syntax. As a consequence,
developing an external DSL entails writing a full-fledged parser in order to
process it. Internal DSLs use existing general-purpose language structures
and, in most cases, the underlying execution environment, as a hosting
base. A clear advantage of this approach is that the compiler or interpreter
of the base language is reused. The main limitation is related to the
limited expressiveness that can be achieved by using the base language
syntactic mechanisms (VAN DEURSEN et al., 2000).

The benefits of using DSLs include: (i) solutions can be expressed in a
high abstraction level that encompasses domain idioms and jargons; (ii)
DSL programs are concise and self-documenting; (iii) DSLs embody domain
knowledge; (iv) it is possible to perform validation and optimization at the

4 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7
 doi:10.5329/RESI.2011.1002007

domain level (MENON and PINGALI, 1999); and (v) DSLs enhance
productivity, reliability, and maintainability (VAN DEURSEN and KLINT,
1998). However, it is worth noting that not all domains are appropriate for
being represented as a DSL. A DSL approach is more suitable when: (i) the
domain is well defined and it has repetitive elements; (ii) there is an
intuitive or well accepted representation of the domain concepts; and (iii)
the abstractions of the general-purpose language being used do not
provide the required expressiveness (SPRINKLE et al., 2009).

3 RELATED WORK IN FRAMEWORK INSTANTIATION

Frameworks have become a de facto standard to implement business
systems. However, instantiating applications using frameworks entails a
fair amount of technical and domain knowledge. Due to the fact that
white-box frameworks are a collection of extensible classes representing
reusable designs, they demand even more knowledge in order to be
instantiated. As mentioned, even architectural knowledge is required.
Thus, such complexity has spurred a growing interest in approaches
tailored to overcoming the technical hurdles of instantiating white-box
frameworks. Most of these approaches draw the information required for
instantiating applications from the framework documentation.

In the context of white-box frameworks, this information basically
consists of the framework class hierarchy, the inter-dependent abstract
classes that need to be subclassed in the new application, the methods to
be overridden in these classes, and examples of applications derived from
the framework. The methods that act as extension points of the framework
are called hook methods (PREE et al., 1995). By overriding these methods
developers can add custom-tailored behavior. Some of the possible types
of instantiation approaches are based upon: (i) studying the framework
source code and its documentation; (ii) exploring exemplars; (iii) cookbooks;
(iv) patterns; and (v) pattern languages.

The first approach consists in studying the framework documentation
and the framework itself, i.e., its class hierarchy, source code, and other
documents (Johnson, 1992). Conventional training or special tutorials are
ways of achieving the required knowledge. The main drawbacks of this
approach are the time required to properly learn the framework from the
ground up and the difficulty to determine whether the newly acquired
comprehension is enough to begin to use the framework.

Examining existing applications built with the framework in order to
identify what needs to be adapted to obtain the custom-application is
another possible approach. Nevertheless, the exploration of exemplars has
two shortcomings: (i) its is difficult to find an application that has all the
particular functionalities that need to be implemented and (ii) when the
functionality is present in an example it may have additional features that
are not needed, thus, the user has to know what can be removed without

 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7 5
doi:10.5329/RESI.2011.1002007

affecting the functionality. An example of this approach is given by
Gangopadhyay and Mitra (1995).

Cookbooks are a sort of clear-cut documentation that describes the
tasks and configurations required to instantiate applications. Usually, this
information is conveyed in a stepwise fashion – like in a recipe. Several
researches have been conducted aimed at evaluating this instantiation
approach (PREE et al., 1995; ORTIGOSA et al., 2000). Two limitations of
this approach are as follows: (i) difficulty in finding the correct “recipe”
and (ii) some tasks and configurations cannot be performed step by step.

According to Johnson (1992), patterns document frameworks and help
to ensure the correct use of their functionalities. Nevertheless, patterns
are situated in a lower abstraction level than frameworks. Moreover, since
frameworks may be quite complex, usually it is not possible to document
the overall design as a set of unrelated patterns, instead they should be
related to each other in the documentation. Thus, pattern languages are a
more suitable technique for documenting frameworks.

Brugali and Sycara (2000) argue that if a framework is developed
based on a pattern language, this pattern language can be used to guide
the instantiation process by providing: (i) domain-specific advices and (ii)
information on the design of the framework in terms of objects and their
relationships. Braga and Masiero (2002) capitalize on this idea and try to
support framework development and instantiation based on pattern
languages and a well-defined process. The proposed process encompasses:
(i) analysis by means of following and applying the patterns of the
underlying pattern language; (ii) mapping between the analysis model,
produced during the previous step, and corresponding framework classes;
(iii) details concerning the implementation of specific classes according to
the requirements of the application under development; and (iv) testing.

An advantage of Braga and Masiero’s (2002) approach is that the
framework user knows exactly where to begin the instantiation since the
pattern language guides him/her through the several parts that need to be
adapted in the framework hierarchy. The instantiation is focused on the
functionality required and there is a clear notion of which requirements are
attended by each pattern. However, applying this approach does not help
to overcome technical problems associated with the instantiation process,
i.e., properly using the programming language at each framework hot spot.

In another related work Fontoura et al. (2000) also propose using
DSLs in order to overcome difficulties from instantiating applications using
frameworks. The proposed approach uses DSLs only to describe hot spots,
thereby instantiating applications involves describing the desired functionality
by means of several DSLs. During instantiation time, DSLs are transformed
to generate the framework instantiation code.

As for our approach, it relies on introducing just one DLS atop a
framework, aiming at providing a suite of notations that is tailored towards

6 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7
 doi:10.5329/RESI.2011.1002007

the underlying domain abstractions. Thus, a clear advantage of our approach
is that it obviates the need for knowing and using more than one DSL.

4 GRN, GREN, AND GRENJ

GRENJ (DURELLI, 2008) is a white-box framework that results from the
reengineering of a framework implemented in Smalltalk (i.e., GREN) which
has been developed based on a pattern language (i.e., GRN) (BRAGA,
2002). Therefore, both frameworks and GRN belong to the same domain,
namely, business resource management. This domain encompasses
applications where resources (e.g., assets or services) can be purchased,
sold, rented, or fixed; thereby many different systems can be instantiated
from it.

GRENJ has more than twenty-nine thousand lines of Java source code
and its architecture consists of two layers: persistence and business.
Moreover, unit tests cover almost 85% of the framework's source code. In
the business layer, there are implementations of each of the fourteen GRN
patterns. Most of the classes in this layer represent elements of some GRN
pattern and are abstract so that they can be extended for generating
specific applications. To properly instantiate applications, the user must be
familiar with GRN and should have a fair knowledge of GRENJ architectural
details; let alone having knowledge of several advanced Java features,
e.g., generics and reflection application programming interface (API). To
cope with these difficulties, we devised a DSL that encapsulates all details
concerning application instantiation. However, before delving into details
of our DSL, in the next section we canvass whether the domain, as dealt
and represented by GRN, deserves to be referred to as a textual DSL.

5 GRN DOMAIN EVALUATION

Sprinkle et al. (2009) discuss a series of questions intended as a
checklist for ascertaining whether a problem merits a DSL approach. The
items of such a list that have been considered can be summarized by the
following questions: (i) "Is the domain well-defined?"; (ii) "Does the domain
have repetitive elements or patterns, such as multiple products, features
or targets?"; (iii) "Is there a clear path from requirements’ analysis and
specification to execution?"; and (iv) "Is there an intuitive and well-
accepted representation?".

GRN patterns and the way they are organized capture and concisely
convey information on the business resource domain. In addition to it, GRN
provides a path that emphasizes the identification of concepts that can be
regarded as "resources". After identifying these concepts, for each
potential resource, the user iterates throughout the pattern language
coherently applying the patterns. Hence, we can conclude that questions
(i) through (iii) can be positively answered. Nevertheless, taking into
consideration item (iv), it is worth noting that there is no available
representation apart from the analysis-level class diagrams provided by

 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7 7
doi:10.5329/RESI.2011.1002007

GRN to illustrate each pattern. We have not emphasized item (iv) since we
intend to implement a textual DSL. We argue that an intuitive, well-
accepted graphical representation is not imperative for creating the DSL
syntax.

Given that most of the checklist items have been regarded as
applicable to GRN and consequently to the GRENJ domain, we have
developed a textual DSL in order to lessen the effort required to
instantiate applications using GRENJ. Information on the implementation of
such DSL is presented in the next section.

6 RM-DSL IMPLEMENTATION

Our domain specific language is called resource management Domain
Specific Language (rm-DSL). We have chosen to implement an internal
DSL (i.e., adapting an existing general-purpose language by adding or
changing methods, operators, and other structures), thus rm-DSL was built
on top of the Ruby programming language (FLANAGAN and MATSUMOTO,
2008). Moreover, in order to support the development and design of our
DSL, we have consulted several DSL design patterns described by Spinellis
(2001). Along this section, as we describe the DSL implementation, we
also briefly mention the patterns applied.

The most important points concerning the implementation of a DSL on
top of an existing language are described by the structural pattern
Piggyback (SPINELLIS, 2001). The use of this pattern consists simply in
obtaining all standardized support for common syntactical elements from
the hosting language. Hence, taking advantage of several Ruby language
structures, we have designed rm-DSL so that it provides a notation
intended to reduce the semantic distance between the problem domain
and the solution domain, easing the instantiation of applications using
GRENJ framework by hiding details related to the framework and its
intricacies.

Rm-DSL uses code templates containing valid subclasses of GRENJ
framework classes which, usually, are extended and have their hook
methods overridden during application instantiation. These code templates
have lexical hints, which point out chunks of code that must be customized
according to the application being instantiated. The notation used is as
follows: every element preceded with # is replaced by a value provided by
the user during application instantiation by means of the rm-DSL. In Listing
1 we show an example of the sort of code template used by the DSL. In
this chunk of code, all occurrences of #class_name are replaced by the
resource name supplied during instantiation. In this example GRENJ is
being instantiated to a DVD rental store, where Movie is playing the role of
Resource. The pattern classes have fixed attributes, but during instantiation
new attributes can be added. The lexical hints #attributes and
#attribute_initializations are replaced by attribute declarations and attribute
initializations, respectively. These lexical hints represent the added

8 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7
 doi:10.5329/RESI.2011.1002007

attributes in order to customize the resource being instantiated. It is worth
noting that the code templates used by rm-DSL can also be considered a
DSL. More specifically, it can be regarded as an external DSL that applies
the Lexical Processing pattern (SPINELLIS, 2001) since it is geared towards
lexical translation by using a notation based on lexical hints; in this case,
the prefix character #.

For instance, the chunk of code shown in Listing 2 can be generated
from the rm-DSL code shown in Listing 3. The utilization of our DSL
consists in instantiating implementations of GRN patterns and adding
attributes to these instantiations in order to customize them. At line 4 of
Listing 3, an instantiation it is shown of the Identify the Resource pattern
from GRN (BRAGA, 2002). In such a context, the resource being
instantiated is a movie and it has a string as attribute which describes its
synopsis. During the addition of attributes, the user is able to specify other
properties related to them, e.g., access modifier and whether it is required
to generate getters and setters methods. As can be seen from lines 5 to 7
of Listing 3, attributes are added using the += operator. Our DSL takes
advantage of the fact that Ruby implements a number of its operators as
methods (FLANAGAN and MATSUMOTO, 2008), allowing classes to define
new meanings for these operators.

Listing 1. Chunk of a code template used by rm-DSL

Listing 2. Resulting code from the rm-DSL code in Listing 3

 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7 9
doi:10.5329/RESI.2011.1002007

Listing 3. Instantiating the Identify the Resource pattern and adding an attribute to it

As mentioned, the information needed to instantiate applications is
drawn from certain key points of rm-DLS programs (.rb files). In order to
generate the code shown in Listing 2, information that varies according to
the application being instantiated has to be explicitly specified, e.g., (i)
name of the class to be generated, (ii) its attribute names, (iii) and
whether it is necessary to generate methods to get and set the value of
each attribute. As illustrated in the overview in Figure 1, such information
is used to replace the code template’s lexical hints, thereby generating the
resulting Java code.

Figure 1. rm-DSL overview: the interaction among the involved files

7 CONTRASTING INSTANTIATION USING GRENJ AND RM-DSL

In this section we highlight the main particularities of instantiating
applications both using GRENJ framework (i.e., through extending framework
superclasses and overriding hook methods) and rm-DSL. In order to do
that, we have instantiated the class diagram shown in Figure 2 using both

10 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7
 doi:10.5329/RESI.2011.1002007

foregoing approaches. The underlying class diagram represents part of the
functionalities required by a DVD rental store and has been created
applying GRN patterns. Inside the arrows, the following format has been
adopted: P#n: role, where n is the pattern number in the context of GRN
and role is the “role” played by this class in the underlying pattern. The
added attribute is depicted in a lighter shade of gray.

Figure 2. DVD rental store modeled applying GRN patterns

Implementing such an application using GRENJ requires extending
three classes. In each extended class, it is necessary to implement three
distinct constructors, i.e. a default constructor that has no parameters, one
that has all added attributes passed as parameters, and one that receives
instances of java.sql.ResultSet and grenj.util.Index. It is also necessary to
implement all getters and setters methods. Moreover, for implementing
persistence, in each class, the following methods have to be overridden:
insertionFieldClause, insertionValueClause, and updateSetClause. In the
context of the Movie class, it is also necessary to override the method
getResourceInstanceClass in order to indicate which class represents a
resource instance; in this case, the method must be overridden so that it
returns an instance of DVD. The number of classes and methods that have
to be implemented are summarized in Table 1. Given that the developer
needs to implement many methods, this approach results in a lot of effort
and source code. This large amount of Java source code that needs to be
implemented makes this approach error-prone.

Table 1. Classes and methods that have to be implemented during the
instantiation using GRENJ framework

Class Added Attributes Added Methods Lines of Code

Movie 1 12 279

DVD 0 6 134

Genre 0 6 89

Total 1 24 502

By applying our DSL the user needs to have knowledge of neither
GRENJ architecture nor Java programming language. In addition,
application instantiations using rm-DSL have less lines of code and the
resulting source code is more human-readable. The DVD rental store
depicted in Figure 2 can be instantiated using rm-DSL as shown in Listing
4. In the context of rm-DSL, it consists simply in creating instances of each
pattern as if they were simple classes (e.g., lines 6 and 8), whereas using
GRENJ framework mandates the implementation of new classes that have

 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7 11
doi:10.5329/RESI.2011.1002007

to be fairly customized at each hot spot. Therefore, instantiating
applications using GRENJ may be a rather cumbersome activity.

Listing 4. Instantiating the DVD rental store depicted in Figure 2 using rm-DSL

8 THE BENEFITS DSLS MAY PROVIDE FOR ENTREPRENEURS: DRIVING
THE INSTANTIATION PROCESS FROM THE PERSPECTIVE OF
NONTECHNICAL PERSONNEL

This section is intended to outline the benefits of using DSLs from
either a manager or a businessman viewpoint. It is important to emphasize
that the following discussion presents such benefits in a broader sense.
That is, we do not emphasize only the advantages of DSLs that act as
facades for frameworks (e.g., rm-DSL), rather we center around describing
general advantages. We also outline some of the drawbacks of using DSLs
so that entrepreneurs can weigh the pros and cons and decide whether
they are applicable to their circumstances.

One of the advantages of using a DSL is that it improves the
communication between developers and project stakeholders. In fact,
DSLs make the collaboration with business users more approachable by
acting as a common bridge of understanding between the developers and
the domain experts. Due to the fact that DSLs share a common vocabulary
with the problem domain, nontechnical people as business users can
cooperate with developers and programmers alike. This opens up
possibilities for having domain experts validate the domain rules as they
are being programmed without relying upon high-level documentation
tailored to nontechnical people. For instance, the domain expert group can
verify test cases as they are developed, further ensuring that the
underlying software system is in conformance with the intricate domain

12 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7
 doi:10.5329/RESI.2011.1002007

rules. Moreover, such a common terminology makes it possible to easily
trace artifacts from the problem domain to its respective representation in
the solution domain. As far as we are concerned, establishing an improved
communication medium throughout the development cycle is the major
benefit of using DSLs.

As previously mentioned, there is also evidence that using DSLs
improves productivity. Such improvements have been reported in a myriad
of domains, including digital signal processing, telecommunications,
electrical utilities, and home automation. As described by Sprinkle et al.
(2009), Nokia and Panasonic have reported significant productivity
improvements. Therefore, managers seeking to boost productivity may be
willing to sacrifice more time up-front in order to develop a DSL comprising
the problem domain terminology; the resulting DSL is likely to boost
productivity as well as bring other of its inherent benefits. However, how
much of such improvements in productivity can be attributed to better
communication between the involved parts are unknown. Thus, we argue
that this is a topic of much-needed exploration.

As for disadvantages, the most obvious one is poor performance.
Since DSL entails an additional layer it may incur in not-so-negligible
overheads during runtime. Thus, before considering creating a DSL,
managers and senior developers must be able to ascertain whether the
computation overhead introduced by DSLs is not going to get in the way of
achieving the expected response times and performance.

After determining that performance is not a central issue, managers
and senior developers have to take stock of the complexity of the domain
being dealt with. Given that DSL have an upfront-cost, it may not make
sense to waste time creating DSLs for straightforward domains. We
contend that only marginal benefits would be achieved in cases where the
domain rules are well-known.

Another issue regarding DSLs is the lack of tooling support. For
instance, since DSLs are in-house creations, usually they are not supported
by mainstream integrated development environments (IDEs). Therefore,
features geared towards simplifying and speeding up the creation of
source code such as syntax highlighting, autocomplete, and refactoring
are not available and, when required, have to be developed from the
ground up. Naturally, this lack of support is ameliorated when internal
DSLs are employed: a subset of the support provided to the underlying
programming language can be used.

9 CONCLUDING REMARKS

Learning to use an object-oriented framework effectively requires
considerable investment of effort. Besides, due to the large amount of
customization source code required for instantiating each application, this
process tends to be error-prone. Aiming at overcoming these problems, we
propose the use of a DSL as a facade over the framework being

 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7 13
doi:10.5329/RESI.2011.1002007

encapsulated, thereby concealing details related to the underlying framework
and its intricacies. Such a DSL must be sufficiently expressive to support
the description of all possible combinations of valid instantiations.

In order to prove the feasibility of the proposed approach, we have
presented a DSL to lessen the amount of Java source code and effort
needed to instantiate applications using GRENJ framework. Such a DSL,
which is called rm-DSL, encompasses domain concepts and provides the
user with a more concise, human-readable syntax than Java. Through rm-
DSL we have shown that it is possible to reuse GRENJ framework source
code indirectly through code templates containing valid chunks of GRENJ
subclasse code and lexical hints that are replaced according to
instantiation needs. Hence, rm-DSL and GRENJ framework synergistically
produce a more flexible approach for instantiating applications.

A shortcoming of our DSL is that it covers only six of the fourteen
patterns implemented on GRENJ framework. Therefore, as a future work,
we intend to implement the remaining patterns. Another considered
extension is to add validation functionalities, allowing rm-DSL to determine
whether an instantiation is in compliance with GRN criteria, thereby
providing the user with instantiation error messages. Moreover, we aim at
conducting case studies for evaluating the effectiveness and the amount
of reuse that can be achieved by using our DSL in contrast with solely
using GRENJ framework.

REFERENCES

BRAGA, Rosana Teresinha Vaccare. A process for creating and
instantiating frameworks that are based on domain-specific pattern
languages (In Portuguese). 2002. PhD thesis - ICMC/USP, São Carlos –SP.
2002.

BRAGA, Rosana Teresinha Vaccare. MASIERO, Paulo César. The role of
pattern languages in the instantiation of object-oriented frameworks.
Advances in Object-Oriented Information Systems, 20426, p. 403–410,
2002.

BRUGALI, David; SYCARA, Katia. Frameworks and pattern languages: an
intriguing relationship. ACM Computing Surveys, v. 32, March, 2002.

DURELLI, Vinicius Humberto Serapilha. GRENJ: A framework resulting from
a iterative reengineering process applying TDD (In Portuguese). 2008.
Master thesis - Departamento de Computacao, Universidade Federal de
São Carlos (UFSCar), São Carlos, 2008.

FAYAD, Mohamed; SCHMIDT, Douglas. Building application frameworks:
object-oriented application frameworks. Communications of ACM, v. 40, n.
10, p. 32-38, October, 1997.

FLANAGAN, David; MATSUMOTO, Yukihiro. The Ruby programming
language. O’Reilly Media Inc., 2008.

14 Revista Eletrônica de Sistemas de Informação, v. 10, n. 2, artigo 7
 doi:10.5329/RESI.2011.1002007

FONTOURA, Marcus; BRAGA, Christiano; MOURA, Leonardo; LUCENA,
Carlos. Using domain specific languages to instantiate object-oriented
frameworks. Software, v. 147, n. 4, p. 109-116, August, 2000.

FOWLER, Martin. A pedagogical framework for domain-specific languages.
IEEE Software, v. 26, n. 4, p. 13–14, August, 2009. doi:
http://dx.doi.org/10.1109/MS.2009.85

GANGOPADHYAY, Dipayan; MITRA, Subrata. Understanding frameworks by
exploration of exemplars. In: International Workshop on Computer-Aided
Software Engineering, 7., Toronto. 1995.

JOHNSON, Ralph. Documenting frameworks using patterns. In: OOPSLA
’92: conference proceedings on Object-oriented programming systems,
languages, and applications, p. 63–76. ACM, 1992.

JOHNSON, Ralph. Frameworks = (components + patterns). Communications
of the ACM, v. 40, n. 10, p. 39–42, October, 1997. doi: http://dx.doi.org/
10.1145/262793.262799

MENON, Vijay; PINGALI, Keshav. A case for source-level transformations in
matlab. In: PLAN ’99: Proceedings of the 2nd conference on Domain-
specific languages, p. 53–65. ACM, 1999.

ORTIGOSA, Alvaro; CAMPO, Marcelo; MORIYON, Roberto. Towards agent-
oriented assistance for framework instantiation. In: OOPSLA ’00:
Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented
programming, systems, languages, and applications, p. 253–263. ACM,
2000.

PREE, Wolfgang; POMBERGER, Gustav; SCHAPPERT, Albert; SOMMERLAD,
Peter. Active guidance of framework development. Software – Concepts
and Tools, v. 16, n. 3, p. 94-103, 1995.

SPINELLIS, Diomidis. Notable design patterns for domain-specific languages.
Journal of Systems Software, v. 56, n. 1, p. 91–99, February, 2001.
doi:http://dx.doi.org/10.1016/S0164-1212(00)00089-3

SPRINKLE, Jonathan; MERNIK, Marjan; TOLVANEN, Juha-Pekka; SPINELLIS,
Diomidis. Guest Editors’ Introduction: what kinds of nails need a domain-
specific hammer? IEEE Software, v. 26, n. 4, p. 15–18, July/August, 2009.
doi: http://dx.doi.org/10.1109/MS.2009.92

VAN DEURSEN, Arie; KLINT, Paul. Little languages: little maintenance?
Journal of Software Maintenance: Research and Practice, v. 10, n. 2, p. 75–
92, 1998.

VAN DEURSEN, Arie; KLINT, Paul; VISSER, Joost. Domain-specific languages:
an annotated bibliography. ACM SIGPLAN Notices, v. 35, n. 6, p. 26–36,
June, 2000.

