HISTORICAL ANALYSIS OF MESSAGE CONTENTS TO RECOMMEND ISSUES TO OPEN SOURCE SOFTWARE CONTRIBUTORS

Igor Fabio Steinmacher, Igor S Wiese, Andre Luis Schwerz, Rafael Liberato Roberto, João Eduardo Ferreira, Marco Aurélio Gerosa
DOI: https://doi.org/10.21529/RESI.2014.1302005

Texto completo:

PDF (English)

Resumo

Os desenvolvedores de projetos de software livre distribuídos utilizam ferramentas de acompanhamento de pendências para coordenar o seu trabalho. Essas ferramentas armazenam informações importantes, mantendo registro de decisões importantes e soluções para bugs. Decidir sobre que pendências são as mais adequadas para se contribuir pode ser difícil, uma vez que a elevada quantidade de dados aumenta a pressão sobre os desenvolvedores. Este artigo mostra a importância do conteúdo das discussões que ocorrem por meio da ferramenta de acompanhamento de pendências em um projeto de software livre para a construção de um classificador para predizer a participação de um colaborador na solução de um problema. Para projetar este modelo de predição, utilizamos dois algoritmos de aprendizagem de máquina: Naïve Bayes e J48. Utilizamos dados do projeto Apache Hadoop Commons para avaliar o uso dos algoritmos. Aplicando algoritmos de aprendizado de máquina aos dez desenvolvedores mais ativos no projeto, obtivemos uma média de recall de 66,82% para Naïve Bayes e 53,02% usando J48. Obtivemos 64,31% de precisão e 90,27% de acurácia usando o J48. Também realizamos um estudo exploratório com cinco desenvolvedores que participaram na solução de um volume menor de problemas , obtendo 77,41% de precisão, 48% de recall, e 98,84% de acurácia usando o algoritmo J48. Os resultados indicam que o conteúdo dos comentários em pendências/ problemas em projetos de software livre representam um fator relevante com base no qual recomendar pendências aos desenvolvedores que colaboram com o projeto.

Palavras-chave

open source; recommendation system; issue tracker; mining software repositories


Compartilhe