Análise dos Fatores Que Influenciam a Intenção de Uso do M-Commerce por Americanos da Geração Millennial

Mauricio do Nascimento Perini, Fernanda Lazzari, Luciene Eberle, Gabriel Sperandio Milan
DOI: https://doi.org/10.21529/RECADM.2020006

Texto completo:

PDF

Resumo

Ao longo dos últimos anos, evidenciou-se um crescimento de vendas através do m-commerce (mobile commerce), por meio dos smartphones, que passou a ter impacto significativo no comércio eletrônico dos países. Com isso, surge a necessidade de investigar quais são os fatores que influenciam a Intenção de Uso do m-commerce pelos usuários. Por intermédio de uma adaptação do modelo da UTAUT (Unified Theory of Acceptance and Use of Technology – Teoria Unificada de Aceitação e Uso de Tecnologia), este estudo analisou fatores que afetam a Intenção de Uso de americanos. Os resultados reafirmam a relação entre a Expectativa de Performance e as Condições Facilitadoras e a Intenção de Uso. Além disso, confirmou-se a relação entre a Expectativa de Performance e a Expectativa de Esforço e entre a Expectativa de Esforço e as Condições Facilitadoras. Por fim, apresenta-se o efeito moderador da idade entre a Influência Social e a Intenção de Uso do m-commerce.


Palavras-chave

comércio eletrônico; m-commerce; UTAUT; intenção de uso; adoção de tecnologia


Referências


Agudo-Peregrina, A. F., Hernández-Garcia, À., & Pascual-Miguel F. J. (2014). Behavioral intention, use behavior and the acceptance of electronic learning systems: differences between higher education and lifelong learning. Computers in Human Behavior, 34, 301-314.

Arcila, C., Calderín, M., & Aguaded, I. (2015). Adoption of ICTs by communication researchers for scientific diffusion and data analysis. El Profesional de la Información, 24(5), 526-536.

BagozziI, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: a holistic construal. Administrative Science Quarterly, 27(3), 459-489.

Bagozzi, R. P., & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models. Journal of the bAcademic of Marketing Science, 40(1), 8-34.

Bearden, W. O., Netemeyer, R. G., & Haws, K. L. (2011). Handbook of marketing scales: multi-item measures for marketing and consumer behavior research. 3rd ed. Thousand Oaks: Sage Publications.

Bobsin, D., Visentini, M. S., & Rech, I. (2009). Em busca do estado da arte do UTAUT: ampliando as considerações sobre o uso da tecnologia. RAI – Revista de Administração e Inovação, 6(2), 99-118.

Broekhuizen, T. L. J., Delre, S. A., &Torres, A. (2011). Simulating the cinema market: how cross-cultural differences in social influence explain box office distributions. Journal of Product Innovation Management, 28(2), 204-217.

Brohan, M. (2016). Mobile commerce is now 30% of all U.S. e-commerce. Recuperado em 09 outubro, 2018, de https://www.internetretailer.com

Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.). Handbook of structural equation modeling (pp. 361-379). New York: The Guilford Press.

Byrne, B. M. (2016). Structural equation modeling with AMOS: basic concepts applications, and programming. 3nd ed. New York: Routledge.

Calderón, C. A., López, M., & Peña, J. (2017). El efecto condicional indirecto de la expectativa de rendimiento em el uso de Facebook, Google +, Instagram y Twitter por jóvenes. RLCS – Revista Latina de Comunicación Social, 72, 590-607.

Chen, J. (2011). The effects of education compatibility and technological expectancy on e-learning acceptance. Computer & Education, 57(2), 1501-1511.

Chong, A.Y. (2012). Predicting m-commerce adoption determinants: a neural network approach. Expert Systems with Application, 40(2), 523-530.

Cook, E. J., Randhawa, G., Sharp, C., Ali, N., Guppy, A., Barton, G., Bateman, A., & Grawford-White, J. (2016). Exploring the factor that influence the decision to adopt and engage with an integrated telehealth and telecare service in Cambridge Shire, UK: a qualitative study of patient. BMC Health Services Research, 16, 1-20.

Coursaris, C., & Hassanein, K. (2001). Understanding m-commerce: a consumer centric model. Quarterly Journal of Electronic Commerce, 3(3), 247-271.

Dommeyer, C. J. & Gross, B. L. (2003). What consumers know and what they do: an investigation of consumer knowledge, awareness, and use of privacy protection strategies. Journal of Interactive Marketing, 17(2), 34-51.

Economist, The. (2017). The Big Mac index. Recuperado em 20 meio, 2017, de http://www.economist.com/content/big-mac-index

Engotoit B., Kituyi, G. M., & Moya, M. B. (2016). Influence of performance expectancy on commercial farmers’ intention to use mobile-based communications technologies for agriculturalmarket information dissemination in Uganda. Journal of Systems and Information Technology, 18(4), 346-363.

Feijoo, C., Gómez-Barroso, J., Aguado, J., & Ramos, S. (2012). Mobile implication: Industry challenges and policy implication. Telecommunications Policy, 36(3), 212-221.

Farias, J. S., Pereira, D. S., Albuquerque, P. H. M., & Martins, M. S. (2014). A aceitação do Moodle na educação a distância: uma aplicação do modelo conceitual UTAUT. REAVI – Revista Científica do Alto do Itajaí, 3(4), 40-53.

Fávero, L. P., & Belfiore, P. (2017). Manual de análise de dados: estatística e modelagem multivariada com Excel, SPSS e Stata. Rio de Janeiro: Elsevier.

Fink, A. (2013). How to conduct surveys: a step-by-step guide. 5th ed. Thousand Oaks: Sage Publications.

Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobserved variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

García, A. V. C., Dujo, A. G., & Rodríguez, J. M. M. (2014). Factores learning en educación superior: adaptación del modelo UTAUT. Educación, 21, 217-240.

Garver, M. S., & Mentzer, J. T. (1999). Logistics research methods: employing structuralequation modeling to test for construct validity. Journal of Business Logistics, 20(1), 33-57.

Gorsuch, R. L. (2015). Factor analysis. New York: Routledge.

Gupta, B., Dasgupta, S. & Gupta, A. (2008). Adoption of ICT in a government organization in a developing country: an American study. Journal of Strategic Information Systems, 17(2), 140-154.

Hair Jr., J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis.7th ed. Upper Saddle River: Pearson.

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York: The Guilford Press.

Hazen, B. T., & Kung, L. (2014). Performance expectancy and use of enterprise architecture: training as an intervention. Journal of Enterprise Information, 27(2), 180-196.

Hill, W. W., Beatty, S. E., & Walsh, G. (2013). A segmentation of adolescent online users and shoppers. Journal of Services Marketing, 27(5), 347-360.

Jambulingam, M. (2013). Behavioral intention to adopt mobile technology among tertiary students. World Applied Sciences Journal, 22(9), 1.262-1.271.

Johnson, R. A., & Wickern, D. W. (2007). Applied multivariate statistical analysis. 6th ed. Upper Saddle River: Pearson / Prentice Hall.

Kline, R. B. (2011). Principles and practice of structural equation modeling. 3rd ed. New York: The Gilford Press.

Larentis, F., Giacomello, C. P., & Camargo, M. E. (2012). Análise da importância em pesquisas de satisfação através da regressão múltipla: estudo do efeito de diferentes pontos de escala. Análise – Revista Acadêmica da FACE, 23(3), 258-269.

Lin, G. T. R., & Sun, C. C. (2009). Factors influencing satisfaction and loyalty in online shopping: an integrated model. Online Information Review, 33(3), 458-475.

Lian, J., & Yen, D. C. (2014). Online shopping drivers and barriers for older adults: age and gender differences. Computers in Human Behavior, 37, 133-143.

Lu, J., Yu, C., Liu, C., & Wei, J. (2017). Comparison of mobile shopping continuance intention between China and USA from an espoused cultural perspective. Computers in Human Behavior, 75, 130-14617.

Luchini, A. C. B., & Matté, L. L. (2015). Millenial boys: identidade e comportamento de consumo de rapazes pertencentes à Geração Y. Ponto Revista Científica, 1(2), 20-27.

MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490-504.

Malhotra, N. K., Birks, D., & Wills, P. (2012). Marketing research: applied approach. 4th ed. New York: Pearson.

Mulaik, S. A. (2010). Foundations of factor analysis. 2nd ed. Boca Raton: Taylor & Francis Group.

Ng, E. S. W., Schweitzer, L., & Lyons, S. T. (2010). New generation, great expectations: a field study of the Millenial generation. Journal of Business and Psychology, 25(2), 281-292.

Osborne, J. W. (2013). Best practices in data cleaning. Thousand Oaks: Sage Publications.

Palvia, P. (2009). The role of trust in e-commerce relational exchange: a unified model. Information & Management, 46(4), 213-220.

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717-731.

Punj, G. (2011). Effect of consumer beliefs on online purchase behavior: the influence of demographic characteristics and consumption values. Journal of Interactive Marketing, 25(3), 134-144.

Pynoo, B., Devolder, P., Tondeur, J., Braak, J., Duyck, W., & Duyck, P. (2011). Predicting secondary school teachers’ acceptance and use of a digital learning environment: a cross-sectional study. Computers in Human Behavior, 27, 568-575.

Qingfei, M., Shaobo, J., & Gang, Q. (2008). Mobile commerce user acceptance study in China: a revised UTAUT model. Tsinghu a Science and Technology, 13(3), 257-264.

Roca, J.C., Chiu, C., & Martínez, F.J. (2006). Understanding e-learning continuance intention: An extension of the technology acceptance model. International Journal of Human-Computer Studies, 64, 683-693.

Rogers, E. M. (1995). Diffusion of innovations. 4th ed. New York: The Free Press.

Saleh, Z., & Mashhour, A. (2014). Consumer attitude towards m-commerce: the perceived level of security and the role of trust. Journal of Emerging Trends in Computing and Information Sciences, 5(2), 111-117.

San-Martín, S., Prodanova, J., & Jiménez, N. (2015). The impact of age in the generation of satisfaction and WOM in mobile shopping. Journal of Retailing and Consumer Services, 23, 1-8.

Sharma, A. (2002). Trends in internet-based business to business marketing. Industrial Marketing Management, 31(2), 77-84.

Sharma, R., & Yetton, P. (2007). The contingent effects of training, technical complexity, and task interdependence on successful information systems implementation. MIS Quarterly, 31(2), 219-238.

Smith, A. (2010). Home broadband. Washington: Pew Research Center.

Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics. 6th ed. Boston: Pearson.

Teo, T., Lee, C. B., & Chai, C. S. (2008). Understanding pre-service teachers’ computer attitudes: Applying and extending the technology acceptance model. Journal of Computer Assisted Learning, 24, 128-143.

Terres, M. S., Koetz, C. I., Santos, C. P., & Tem Caten, C. S. (2010). O papel da confiança na marca na intenção de adoção de novas tecnologias. RAI – Revista de Administração e Inovação, 7(4), 162-185.

United States Census Bureau. U.S. Census Bureau 2016. Recuperado em 20 novembro, 2016, de https://www.census.gov

Vannoy, S., & Palvia, P. (2010). The social influence model of technology adoption. Communications of the ACM, 53(6), 149-153.

Venkatesh, V., Brown, S. A., Maruping, L. M., & Bala, H. (2008). Predicting different conceptualization of system use: the competing roles of behavioral intention, facilitating conditions, and behavioral expectation. MIS Quarterly, 32(3), 483-502.

Venkatesh, V., Maruping, L. M., & Brown, S. A. (2006). Role of time in self-prediction of behavior. Organizational Behavior and Human Decision Processes, 100(2), 160-176.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly,36(1), 157-178.

Yang, K. (2010). Determinants of US consumer mobile shopping services adoption: implications for designing mobile shopping services. Journal of Consumer Marketing, 27(3), 262-270.

Yang, K., & Kim, H. Y. (2012). Mobile shopping motivation: an application of multiple discriminant analysis. International Journal of Retail & Distribution Management, 40(10), 778-789.

Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management & Data Systems, 115(2), 253-269.

Zhang, J. J., Yuan, Y., & Aarcher, N. (2002). Driving forces for m-commerce success. Journal of Internet Commerce, 1(3), 81-104.

Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model: a critical survey of consumer factors in online shopping. Journal of Electronic Commerce, 8(1), 41-62.

Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.




Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.